We propose a new method to estimate plant diversity with Rényi and Rao indexes through the so called High Order Singular Value Decomposition (HOSVD) of tensors. Starting from NASA multi-spectral images we evaluate diversity and we compare original diversity estimates with those realized via the HOSVD compression methods for big data. Our strategy turns out to be extremely powerful in terms of memory storage and precision of the outcome. The obtained results are so promising that we can support the efficiency of our method in the ecological framework.

High order singular value decomposition for plant diversity estimation / Bernardi, Alessandra; Iannacito, Martina; Rocchini, Duccio. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - 2021/14:4(2021), pp. 557-591. [10.1007/s40574-021-00300-w]

High order singular value decomposition for plant diversity estimation

Bernardi, Alessandra;
2021-01-01

Abstract

We propose a new method to estimate plant diversity with Rényi and Rao indexes through the so called High Order Singular Value Decomposition (HOSVD) of tensors. Starting from NASA multi-spectral images we evaluate diversity and we compare original diversity estimates with those realized via the HOSVD compression methods for big data. Our strategy turns out to be extremely powerful in terms of memory storage and precision of the outcome. The obtained results are so promising that we can support the efficiency of our method in the ecological framework.
2021
4
Bernardi, Alessandra; Iannacito, Martina; Rocchini, Duccio
High order singular value decomposition for plant diversity estimation / Bernardi, Alessandra; Iannacito, Martina; Rocchini, Duccio. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - 2021/14:4(2021), pp. 557-591. [10.1007/s40574-021-00300-w]
File in questo prodotto:
File Dimensione Formato  
Bernardi2021_Article_HighOrderSingularValueDecompos.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/309791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact