Biomedical imaging is a relevant noninvasive technique aimed at generating an image of the biological structure under analysis. The arising visual representation of the characteristics of the object is affected by both the measurement process and reconstruction algorithm. This procedure can be considered as a hybridization of data information, measurement physics, and prior information.

Machine Learning in Electromagnetics With Applications to Biomedical Imaging: A Review / Li, Maokun; Guo, Rui; Zhang, Ke; Lin, Zhichao; Yang, Fan; Xu, Shenheng; Chen, Xudong; Massa, Andrea; Abubakar, Aria. - In: IEEE ANTENNAS & PROPAGATION MAGAZINE. - ISSN 1045-9243. - STAMPA. - 2021, 63:3(2021), pp. 39-51. [10.1109/MAP.2020.3043469]

Machine Learning in Electromagnetics With Applications to Biomedical Imaging: A Review

Massa, Andrea;
2021-01-01

Abstract

Biomedical imaging is a relevant noninvasive technique aimed at generating an image of the biological structure under analysis. The arising visual representation of the characteristics of the object is affected by both the measurement process and reconstruction algorithm. This procedure can be considered as a hybridization of data information, measurement physics, and prior information.
2021
3
Li, Maokun; Guo, Rui; Zhang, Ke; Lin, Zhichao; Yang, Fan; Xu, Shenheng; Chen, Xudong; Massa, Andrea; Abubakar, Aria
Machine Learning in Electromagnetics With Applications to Biomedical Imaging: A Review / Li, Maokun; Guo, Rui; Zhang, Ke; Lin, Zhichao; Yang, Fan; Xu, Shenheng; Chen, Xudong; Massa, Andrea; Abubakar, Aria. - In: IEEE ANTENNAS & PROPAGATION MAGAZINE. - ISSN 1045-9243. - STAMPA. - 2021, 63:3(2021), pp. 39-51. [10.1109/MAP.2020.3043469]
File in questo prodotto:
File Dimensione Formato  
Machine_Learning_in_Electromagnetics_With_Applications_to_Biomedical_Imaging_A_Review.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/307284
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 44
  • OpenAlex ND
social impact