We prove a Cauchy-type integral formula for slice-regular functions where the integration is performed on the boundary of an open subset of the quaternionic space, with no requirement of axial symmetry. In particular, we get a local Cauchy-type integral formula. As a step towards the proof, we provide a decomposition of a slice-regular function as a combination of two axially monogenic functions.

A local Cauchy integral formula for slice-regular functions / Perotti, Alessandro. - In: COMPUTATIONAL METHODS AND FUNCTION THEORY. - ISSN 1617-9447. - 24:1(2024), pp. 185-203. [10.1007/s40315-023-00485-5]

A local Cauchy integral formula for slice-regular functions

Perotti, Alessandro
2024-01-01

Abstract

We prove a Cauchy-type integral formula for slice-regular functions where the integration is performed on the boundary of an open subset of the quaternionic space, with no requirement of axial symmetry. In particular, we get a local Cauchy-type integral formula. As a step towards the proof, we provide a decomposition of a slice-regular function as a combination of two axially monogenic functions.
2024
1
Perotti, Alessandro
A local Cauchy integral formula for slice-regular functions / Perotti, Alessandro. - In: COMPUTATIONAL METHODS AND FUNCTION THEORY. - ISSN 1617-9447. - 24:1(2024), pp. 185-203. [10.1007/s40315-023-00485-5]
File in questo prodotto:
File Dimensione Formato  
NewCauchy_arXiv_v1.pdf

Solo gestori archivio

Descrizione: arxiv v1
Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 192.35 kB
Formato Adobe PDF
192.35 kB Adobe PDF   Visualizza/Apri
s40315-023-00485-5 (1).pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 354.85 kB
Formato Adobe PDF
354.85 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/306471
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact