We prove a Cauchy-type integral formula for slice-regular functions where the integration is performed on the boundary of an open subset of the quaternionic space, with no requirement of axial symmetry. In particular, we get a local Cauchy-type integral formula. As a step towards the proof, we provide a decomposition of a slice-regular function as a combination of two axially monogenic functions.
A local Cauchy integral formula for slice-regular functions / Perotti, Alessandro. - In: COMPUTATIONAL METHODS AND FUNCTION THEORY. - ISSN 1617-9447. - 24:1(2024), pp. 185-203. [10.1007/s40315-023-00485-5]
A local Cauchy integral formula for slice-regular functions
Perotti, Alessandro
2024-01-01
Abstract
We prove a Cauchy-type integral formula for slice-regular functions where the integration is performed on the boundary of an open subset of the quaternionic space, with no requirement of axial symmetry. In particular, we get a local Cauchy-type integral formula. As a step towards the proof, we provide a decomposition of a slice-regular function as a combination of two axially monogenic functions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
NewCauchy_arXiv_v1.pdf
Solo gestori archivio
Descrizione: arxiv v1
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
192.35 kB
Formato
Adobe PDF
|
192.35 kB | Adobe PDF | Visualizza/Apri |
s40315-023-00485-5 (1).pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
354.85 kB
Formato
Adobe PDF
|
354.85 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione