Deep water circulation and mixing processes are responsible for the transport of matter, nutrients and pollutants in deep lakes. Nevertheless, detailed continuous observations are rarely available. To overcome some of these deficiencies and with the aim of improving our understanding of deep mixing processes, a dedicated yearlong mooring comprising 100 high-resolution temperature sensors and a single current meter were located in the deeper half of the 344 m deepest point of the subalpine Lake Garda, Italy. The observations show peaks and calms of turbulent exchange, besides ubiquitous internal wave activity. In late winter, northerly winds activate episodic deep convective overturning, the dense water being subsequently advected along the lake-floor. Besides deep convection, such winds also set-up seiches and inertial waves that are associated with about 100 times larger turbulence dissipation rates than that by semidiurnal internal wave breaking observed in summer. In the lower 60 m above the lake-floor, however, the average turbulence dissipation rate is approximately constant in value year-around, being about 10 times larger than open-ocean values, except during deep convection episodes.

Moored observations of turbulent mixing events in deep Lake Garda, Italy / van Haren, Hans; Piccolroaz, Sebastiano; Amadori, Marina; Toffolon, Marco; Dijkstra, Henk A.. - In: JOURNAL OF LIMNOLOGY. - ISSN 1129-5767. - ELETTRONICO. - 80:1(2021), pp. 1-18. [10.4081/jlimnol.2020.1983]

Moored observations of turbulent mixing events in deep Lake Garda, Italy

Piccolroaz, Sebastiano;Amadori, Marina;Toffolon, Marco;
2021-01-01

Abstract

Deep water circulation and mixing processes are responsible for the transport of matter, nutrients and pollutants in deep lakes. Nevertheless, detailed continuous observations are rarely available. To overcome some of these deficiencies and with the aim of improving our understanding of deep mixing processes, a dedicated yearlong mooring comprising 100 high-resolution temperature sensors and a single current meter were located in the deeper half of the 344 m deepest point of the subalpine Lake Garda, Italy. The observations show peaks and calms of turbulent exchange, besides ubiquitous internal wave activity. In late winter, northerly winds activate episodic deep convective overturning, the dense water being subsequently advected along the lake-floor. Besides deep convection, such winds also set-up seiches and inertial waves that are associated with about 100 times larger turbulence dissipation rates than that by semidiurnal internal wave breaking observed in summer. In the lower 60 m above the lake-floor, however, the average turbulence dissipation rate is approximately constant in value year-around, being about 10 times larger than open-ocean values, except during deep convection episodes.
2021
1
van Haren, Hans; Piccolroaz, Sebastiano; Amadori, Marina; Toffolon, Marco; Dijkstra, Henk A.
Moored observations of turbulent mixing events in deep Lake Garda, Italy / van Haren, Hans; Piccolroaz, Sebastiano; Amadori, Marina; Toffolon, Marco; Dijkstra, Henk A.. - In: JOURNAL OF LIMNOLOGY. - ISSN 1129-5767. - ELETTRONICO. - 80:1(2021), pp. 1-18. [10.4081/jlimnol.2020.1983]
File in questo prodotto:
File Dimensione Formato  
vanHaren_etal_JL2021.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 3.48 MB
Formato Adobe PDF
3.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/306061
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact