Complex networks are characterized by latent geometries induced by their topology or by the dynamics on them. In the latter case, different network-driven processes induce distinct geometric features that can be captured by adequate metrics. Random walks, a proxy for a broad spectrum of processes, from simple contagion to metastable synchronization and consensus, have been recently used, Domenico [Phys. Rev. Lett. 118, 168301 (2017)] to define the class of diffusion geometries and pinpoint the functional mesoscale organization of complex networks from a genuine geometric perspective. Here we first extend this class to families of distinct random walk dynamics—including local and nonlocal information—on multilayer networks—a paradigm for biological, neural, social, transportation, and financial systems—overcoming limitations such as the presence of isolated nodes and disconnected components, typical of real-world networks. We then characterize the multilayer diffusion geometry of synthetic and empirical systems, highlighting the role played by different random search dynamics in shaping the geometric features of the corresponding diffusion manifolds.

Diffusion geometry of multiplex and interdependent systems / Bertagnolli, Giulia; De Domenico, Manlio. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - 103:4(2021), pp. 04230101-04230116. [10.1103/PhysRevE.103.042301]

Diffusion geometry of multiplex and interdependent systems

Bertagnolli, Giulia;De Domenico, Manlio
2021-01-01

Abstract

Complex networks are characterized by latent geometries induced by their topology or by the dynamics on them. In the latter case, different network-driven processes induce distinct geometric features that can be captured by adequate metrics. Random walks, a proxy for a broad spectrum of processes, from simple contagion to metastable synchronization and consensus, have been recently used, Domenico [Phys. Rev. Lett. 118, 168301 (2017)] to define the class of diffusion geometries and pinpoint the functional mesoscale organization of complex networks from a genuine geometric perspective. Here we first extend this class to families of distinct random walk dynamics—including local and nonlocal information—on multilayer networks—a paradigm for biological, neural, social, transportation, and financial systems—overcoming limitations such as the presence of isolated nodes and disconnected components, typical of real-world networks. We then characterize the multilayer diffusion geometry of synthetic and empirical systems, highlighting the role played by different random search dynamics in shaping the geometric features of the corresponding diffusion manifolds.
2021
4
Bertagnolli, Giulia; De Domenico, Manlio
Diffusion geometry of multiplex and interdependent systems / Bertagnolli, Giulia; De Domenico, Manlio. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - 103:4(2021), pp. 04230101-04230116. [10.1103/PhysRevE.103.042301]
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Descrizione: Bertagnolli, G. and De Domenico, M. Phys. Rev. E 103, 042301, 2021.
Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 10.19 MB
Formato Adobe PDF
10.19 MB Adobe PDF Visualizza/Apri
PhysRevE.103.042301.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 9.05 MB
Formato Adobe PDF
9.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/304224
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact