Research on phononic crystal architectures has produced many interesting designs in the past years, with useful wave manipulation properties. However, not all of the proposed designs can lead to convenient realizations for practical applications, and only a limited number of them have actually been tested experimentally to verify numerical estimations and demonstrate their feasibility. In this work, we propose a combined numerical-experimental procedure to characterize the dynamic behavior of metamaterials, starting from a simplified 2D design to a real 3D manufactured structure. To do this, we consider a new design of a resonator-type geometry for a phononic crystal, and verify its wave filtering properties in wave propagation experiments. The proposed geometry exploits a circular distribution of cavities in a homogeneous material, leading to a central resonator surrounded by thin ligaments and an external matrix. Parametric simulations are performed to determine the optimal thickness of this design, leading to a large full band gap in the kHz range. Full-field experimental characterization of the resulting phononic crystal using a scanning laser Doppler vibrometer is then performed, showing excellent agreement with numerically predicted band gap properties and with their resulting effects on propagating waves. The outlined procedure can serve as a useful step towards a standardization of metamaterial development and validation procedures.

Experimental full wavefield reconstruction and band diagram analysis in a single-phase phononic plate with internal resonators / Kherraz, N.; Radzieński, M.; Mazzotti, M.; Kudela, P.; Bosia, F.; Gliozzi, A. S.; Misseroni, D.; Pugno, N. M.; Ostachowicz, W.; Miniaci, M.. - In: JOURNAL OF SOUND AND VIBRATION. - ISSN 0022-460X. - 503:(2021), pp. 116098.1-116098.9. [10.1016/j.jsv.2021.116098]

Experimental full wavefield reconstruction and band diagram analysis in a single-phase phononic plate with internal resonators

Misseroni, D.;Pugno, N. M.;
2021-01-01

Abstract

Research on phononic crystal architectures has produced many interesting designs in the past years, with useful wave manipulation properties. However, not all of the proposed designs can lead to convenient realizations for practical applications, and only a limited number of them have actually been tested experimentally to verify numerical estimations and demonstrate their feasibility. In this work, we propose a combined numerical-experimental procedure to characterize the dynamic behavior of metamaterials, starting from a simplified 2D design to a real 3D manufactured structure. To do this, we consider a new design of a resonator-type geometry for a phononic crystal, and verify its wave filtering properties in wave propagation experiments. The proposed geometry exploits a circular distribution of cavities in a homogeneous material, leading to a central resonator surrounded by thin ligaments and an external matrix. Parametric simulations are performed to determine the optimal thickness of this design, leading to a large full band gap in the kHz range. Full-field experimental characterization of the resulting phononic crystal using a scanning laser Doppler vibrometer is then performed, showing excellent agreement with numerically predicted band gap properties and with their resulting effects on propagating waves. The outlined procedure can serve as a useful step towards a standardization of metamaterial development and validation procedures.
2021
Kherraz, N.; Radzieński, M.; Mazzotti, M.; Kudela, P.; Bosia, F.; Gliozzi, A. S.; Misseroni, D.; Pugno, N. M.; Ostachowicz, W.; Miniaci, M....espandi
Experimental full wavefield reconstruction and band diagram analysis in a single-phase phononic plate with internal resonators / Kherraz, N.; Radzieński, M.; Mazzotti, M.; Kudela, P.; Bosia, F.; Gliozzi, A. S.; Misseroni, D.; Pugno, N. M.; Ostachowicz, W.; Miniaci, M.. - In: JOURNAL OF SOUND AND VIBRATION. - ISSN 0022-460X. - 503:(2021), pp. 116098.1-116098.9. [10.1016/j.jsv.2021.116098]
File in questo prodotto:
File Dimensione Formato  
500-JSV21-Experimental-full-wavefield-phononic-plate.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.22 MB
Formato Adobe PDF
3.22 MB Adobe PDF   Visualizza/Apri
2021-500-Kherraz.pdf

Open Access dal 08/07/2023

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 2.25 MB
Formato Adobe PDF
2.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/304119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact