Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29–103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03–0.76 min and interval width of 0.33–8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet’s accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation.

Data sharing in PredRet for accurate prediction of retention time: application to plant food bioactive compounds / Yanwen Low, Dorrain; Micheau, Pierre; Mikael Koistinen, Ville; Hanhineva, Kati; Abrankó, László; Rodriguez-Mateos, Ana; Bento da Silva, Andreia; van Poucke, Christof; Almeida, Conceição; Andres-Lacueva, Cristina; Rai, Dilip K.; Capanoglu, Esra; Tomás Barberán, Francisco A.; Mattivi, Fulvio; Schmidt, Gesine; Gürdeniz, Gözde; Valentová, Kateřina; Bresciani, Letizia; Petrásková, Lucie; Ove Dragsted, Lars; Philo, Mark; Ulaszewska, Marynka; Mena, Pedro; González-Domínguez, Raúl; Garcia-Villalba, Rocío; Kamiloglu, Senem; de Pascual-Teresa, Sonia; Durand, Stéphanie; Wiczkowski, Wieslaw; Rosário Bronze, Maria; Stanstrup, Jan; Manach, Claudine. - In: FOOD CHEMISTRY. - ISSN 0308-8146. - 2021/357:(2021), pp. 12975701-12975710. [10.1016/j.foodchem.2021.129757]

Data sharing in PredRet for accurate prediction of retention time: application to plant food bioactive compounds

Mattivi, Fulvio;
2021-01-01

Abstract

Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29–103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03–0.76 min and interval width of 0.33–8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet’s accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation.
2021
Yanwen Low, Dorrain; Micheau, Pierre; Mikael Koistinen, Ville; Hanhineva, Kati; Abrankó, László; Rodriguez-Mateos, Ana; Bento da Silva, Andreia; van P...espandi
Data sharing in PredRet for accurate prediction of retention time: application to plant food bioactive compounds / Yanwen Low, Dorrain; Micheau, Pierre; Mikael Koistinen, Ville; Hanhineva, Kati; Abrankó, László; Rodriguez-Mateos, Ana; Bento da Silva, Andreia; van Poucke, Christof; Almeida, Conceição; Andres-Lacueva, Cristina; Rai, Dilip K.; Capanoglu, Esra; Tomás Barberán, Francisco A.; Mattivi, Fulvio; Schmidt, Gesine; Gürdeniz, Gözde; Valentová, Kateřina; Bresciani, Letizia; Petrásková, Lucie; Ove Dragsted, Lars; Philo, Mark; Ulaszewska, Marynka; Mena, Pedro; González-Domínguez, Raúl; Garcia-Villalba, Rocío; Kamiloglu, Senem; de Pascual-Teresa, Sonia; Durand, Stéphanie; Wiczkowski, Wieslaw; Rosário Bronze, Maria; Stanstrup, Jan; Manach, Claudine. - In: FOOD CHEMISTRY. - ISSN 0308-8146. - 2021/357:(2021), pp. 12975701-12975710. [10.1016/j.foodchem.2021.129757]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0308814621007639-main.pdf

Open Access dal 11/04/2021

Descrizione: journal pre-proofs
Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri
1-s2.0-S0308814621007639-main.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/300811
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact