This paper addresses particular eigenvalue problems within the context of two quaternionic function theories. More precisely, we study two concrete classes of quaternionic eigenvalue problems, the first one for the slice derivative operator in the class of quaternionic slice-regular functions and the second one for the Cauchy-Riemann-Fueter operator in the class of axially monogenic functions. The two problems are related to each other by the four-dimensional Laplace operator and Fueter's Theorem. As an application of a particular case of second order eigenvalue problems, we obtain a representation of axially monogenic solutions for time-harmonic Helmholtz and stationary Klein-Gordon equations.
Eigenvalue problems for slice functions / Krausshar, ROLF SÖREN; Perotti, Alessandro. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 1618-1891. - 201:(2022), pp. 2519-2548. [10.1007/s10231-022-01208-8]
Eigenvalue problems for slice functions
PEROTTI, ALESSANDRO
2022-01-01
Abstract
This paper addresses particular eigenvalue problems within the context of two quaternionic function theories. More precisely, we study two concrete classes of quaternionic eigenvalue problems, the first one for the slice derivative operator in the class of quaternionic slice-regular functions and the second one for the Cauchy-Riemann-Fueter operator in the class of axially monogenic functions. The two problems are related to each other by the four-dimensional Laplace operator and Fueter's Theorem. As an application of a particular case of second order eigenvalue problems, we obtain a representation of axially monogenic solutions for time-harmonic Helmholtz and stationary Klein-Gordon equations.File | Dimensione | Formato | |
---|---|---|---|
EigenvaluePbms_arXiv.pdf
Solo gestori archivio
Descrizione: arxiv v1
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
295 kB
Formato
Adobe PDF
|
295 kB | Adobe PDF | Visualizza/Apri |
Kraußhar-Perotti2022_Article_EigenvalueProblemsForSliceFunc.pdf
accesso aperto
Descrizione: first online
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
2.6 MB
Formato
Adobe PDF
|
2.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione