Let g be a semisimple Lie algebra over the field of real numbers. Let G be a real Lie group with Lie algebra g. The real Weyl group of G with respect to a Cartan subalgebra h of g is defined as W(G,h)=NG(h)/ZG(h). We describe an explicit construction of W(G,h) for Lie groups G that arise as the set of real points of connected algebraic groups. We show that this also gives a construction of W(G,h) when G is the adjoint group of g. This algorithm is important for the classification of regular semisimple subalgebras, real carrier algebras, and real nilpotent orbits associated with g; the latter have various applications in theoretical physics.

Computing the real Weyl group / Dietrich, H.; de Graaf, W. A.. - In: JOURNAL OF SYMBOLIC COMPUTATION. - ISSN 0747-7171. - 104:(2021), pp. 1-14. [10.1016/j.jsc.2020.04.001]

Computing the real Weyl group

de Graaf W. A.
2021-01-01

Abstract

Let g be a semisimple Lie algebra over the field of real numbers. Let G be a real Lie group with Lie algebra g. The real Weyl group of G with respect to a Cartan subalgebra h of g is defined as W(G,h)=NG(h)/ZG(h). We describe an explicit construction of W(G,h) for Lie groups G that arise as the set of real points of connected algebraic groups. We show that this also gives a construction of W(G,h) when G is the adjoint group of g. This algorithm is important for the classification of regular semisimple subalgebras, real carrier algebras, and real nilpotent orbits associated with g; the latter have various applications in theoretical physics.
2021
Dietrich, H.; de Graaf, W. A.
Computing the real Weyl group / Dietrich, H.; de Graaf, W. A.. - In: JOURNAL OF SYMBOLIC COMPUTATION. - ISSN 0747-7171. - 104:(2021), pp. 1-14. [10.1016/j.jsc.2020.04.001]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S074771712030016X-main.pdf

Solo gestori archivio

Descrizione: versione pubblicata
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 413.81 kB
Formato Adobe PDF
413.81 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/299181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact