A phase field model for tumour growth is introduced that is based on a Brinkman law for convective velocity fields. The model couples a convective Cahn–Hilliard equation for the evolution of the tumour to a reactiondiffusion-advection equation for a nutrient and to a Brinkman–Stokes type law for the fluid velocity. The model is derived from basic thermodynamical principles, sharp interface limits are derived by matched asymptotics and an existence theory is presented for the case of a mobility which degenerates in one phase leading to a degenerate parabolic equation of fourth order. Finally numerical results describe qualitative features of the solutions and illustrate instabilities in certain situations

Cahn–Hilliard–Brinkman systems for tumour growth / Ebenbeck, Matthias; Garcke, Harald; Nürnberg, Robert. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1179. - 14:11(2021), pp. 3989-4033. [10.3934/dcdss.2021034]

Cahn–Hilliard–Brinkman systems for tumour growth

Nürnberg, Robert
2021-01-01

Abstract

A phase field model for tumour growth is introduced that is based on a Brinkman law for convective velocity fields. The model couples a convective Cahn–Hilliard equation for the evolution of the tumour to a reactiondiffusion-advection equation for a nutrient and to a Brinkman–Stokes type law for the fluid velocity. The model is derived from basic thermodynamical principles, sharp interface limits are derived by matched asymptotics and an existence theory is presented for the case of a mobility which degenerates in one phase leading to a degenerate parabolic equation of fourth order. Finally numerical results describe qualitative features of the solutions and illustrate instabilities in certain situations
2021
11
Ebenbeck, Matthias; Garcke, Harald; Nürnberg, Robert
Cahn–Hilliard–Brinkman systems for tumour growth / Ebenbeck, Matthias; Garcke, Harald; Nürnberg, Robert. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1179. - 14:11(2021), pp. 3989-4033. [10.3934/dcdss.2021034]
File in questo prodotto:
File Dimensione Formato  
EbenbeckGN21accepted.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri
10.3934_dcdss.2021034.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/298935
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact