We experimentally investigate a mechanical squeezed state realized in a parametrically modulated membrane resonator embedded in an optical cavity. We demonstrate that a quantum characteristic of the squeezed dynamics can be revealed and quantified even in a moderately warm oscillator, through the analysis of motional sidebands. We provide a theoretical framework for quantitatively interpreting the observations and present an extended comparison with the experiment. A notable result is that the spectral shape of each motional sideband provides a clear signature of a quantum mechanical squeezed state without the necessity of absolute calibrations, in particular in the regime where residual fluctuations in the squeezed quadrature are reduced below the zero-point level.
Quantum motion of a squeezed mechanical oscillator attained via an optomechanical experiment / Vezio, P.; Chowdhury, A.; Bonaldi, M.; Borrielli, A.; Marino, F.; Morana, B.; Prodi, G. A.; Sarro, P. M.; Serra, E.; Marin, F.. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 102:5(2020). [10.1103/PhysRevA.102.053505]
Quantum motion of a squeezed mechanical oscillator attained via an optomechanical experiment
Prodi G. A.;
2020-01-01
Abstract
We experimentally investigate a mechanical squeezed state realized in a parametrically modulated membrane resonator embedded in an optical cavity. We demonstrate that a quantum characteristic of the squeezed dynamics can be revealed and quantified even in a moderately warm oscillator, through the analysis of motional sidebands. We provide a theoretical framework for quantitatively interpreting the observations and present an extended comparison with the experiment. A notable result is that the spectral shape of each motional sideband provides a clear signature of a quantum mechanical squeezed state without the necessity of absolute calibrations, in particular in the regime where residual fluctuations in the squeezed quadrature are reduced below the zero-point level.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione