We prove LeBrun–Salamon conjecture in the following situation: if X is a contact Fano manifold of dimension 2 n+ 1 whose group of automorphisms is reductive of rank ≥ max (2 , (n- 3) / 2) then X is the adjoint variety of a simple group. The rank assumption is fulfilled not only by the three series of classical linear groups but also by almost all the exceptional ones.

High rank torus actions on contact manifolds / Occhetta, G.; Romano, E. A.; Solá Conde, E. L.; Wisniewski, J. A.. - In: SELECTA MATHEMATICA. NEW SERIES. - ISSN 1420-9020. - 27:1(2021). [10.1007/s00029-021-00621-w]

High rank torus actions on contact manifolds

Occhetta G.;Romano E. A.;Solá Conde E. L.;Wisniewski J. A.
2021-01-01

Abstract

We prove LeBrun–Salamon conjecture in the following situation: if X is a contact Fano manifold of dimension 2 n+ 1 whose group of automorphisms is reductive of rank ≥ max (2 , (n- 3) / 2) then X is the adjoint variety of a simple group. The rank assumption is fulfilled not only by the three series of classical linear groups but also by almost all the exceptional ones.
2021
1
Occhetta, G.; Romano, E. A.; Solá Conde, E. L.; Wisniewski, J. A.
High rank torus actions on contact manifolds / Occhetta, G.; Romano, E. A.; Solá Conde, E. L.; Wisniewski, J. A.. - In: SELECTA MATHEMATICA. NEW SERIES. - ISSN 1420-9020. - 27:1(2021). [10.1007/s00029-021-00621-w]
File in questo prodotto:
File Dimensione Formato  
Occhetta2021_Article_HighRankTorusActionsOnContactM.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 932.03 kB
Formato Adobe PDF
932.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/295555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact