Background Peri-implant mucositis and peri-implantitis are biofilm-related diseases causing major concern in oral implantology, requiring complex anti-infective procedures or implant removal. Microbial biosurfactants emerged as new anti-biofilm agents for coating implantable devices preserving biocompatibility. This study aimed to assess the efficacy of rhamnolipid biosurfactant R89 (R89BS) to reduce Staphylococcus aureus and Staphylococcus epidermidis biofilm formation on titanium. Methods R89BS was physically adsorbed on titanium discs (TDs). Cytotoxicity of coated TDs was evaluated on normal lung fibroblasts (MRC5) using a lactate dehydrogenase assay. The ability of coated TDs to inhibit biofilm formation was evaluated by quantifying biofilm biomass and cell metabolic activity, at different time-points, with respect to uncoated controls. A qualitative analysis of sessile bacteria was also performed by scanning electron microscopy. Results R89BS-coated discs showed no cytotoxic effects. TDs coated with 4 mg/mL R89BS inhibited the biofilm biomass of S. aureus by 99%, 47% and 7% and of S. epidermidis by 54%, 29%, and 10% at 24, 48 and 72 h respectively. A significant reduction of the biofilm metabolic activity was also documented. The same coating applied on three commercial implant surfaces resulted in a biomass inhibition higher than 90% for S. aureus, and up to 78% for S. epidermidis at 24 h. Conclusions R89BS-coating was effective in reducing Staphylococcus biofilm formation at the titanium implant surface. The anti-biofilm action can be obtained on several different commercially available implant surfaces, independently of their surface morphology.

Rhamnolipid coating reduces microbial biofilm formation on titanium implants: an in vitro study / Tambone, E.; Bonomi, E.; Ghensi, P.; Maniglio, D.; Ceresa, C.; Agostinacchio, F.; Caciagli, P.; Nollo, G.; Piccoli, F.; Caola, I.; Fracchia, L.; Tessarolo, F.. - In: BMC ORAL HEALTH. - ISSN 1472-6831. - 2021/21:(2021), pp. 4901-4913. [10.1186/s12903-021-01412-7]

Rhamnolipid coating reduces microbial biofilm formation on titanium implants: an in vitro study

Tambone, E.;Ghensi, P.;Maniglio, D.;Agostinacchio, F.;Nollo, G.;Tessarolo, F.
2021-01-01

Abstract

Background Peri-implant mucositis and peri-implantitis are biofilm-related diseases causing major concern in oral implantology, requiring complex anti-infective procedures or implant removal. Microbial biosurfactants emerged as new anti-biofilm agents for coating implantable devices preserving biocompatibility. This study aimed to assess the efficacy of rhamnolipid biosurfactant R89 (R89BS) to reduce Staphylococcus aureus and Staphylococcus epidermidis biofilm formation on titanium. Methods R89BS was physically adsorbed on titanium discs (TDs). Cytotoxicity of coated TDs was evaluated on normal lung fibroblasts (MRC5) using a lactate dehydrogenase assay. The ability of coated TDs to inhibit biofilm formation was evaluated by quantifying biofilm biomass and cell metabolic activity, at different time-points, with respect to uncoated controls. A qualitative analysis of sessile bacteria was also performed by scanning electron microscopy. Results R89BS-coated discs showed no cytotoxic effects. TDs coated with 4 mg/mL R89BS inhibited the biofilm biomass of S. aureus by 99%, 47% and 7% and of S. epidermidis by 54%, 29%, and 10% at 24, 48 and 72 h respectively. A significant reduction of the biofilm metabolic activity was also documented. The same coating applied on three commercial implant surfaces resulted in a biomass inhibition higher than 90% for S. aureus, and up to 78% for S. epidermidis at 24 h. Conclusions R89BS-coating was effective in reducing Staphylococcus biofilm formation at the titanium implant surface. The anti-biofilm action can be obtained on several different commercially available implant surfaces, independently of their surface morphology.
2021
Tambone, E.; Bonomi, E.; Ghensi, P.; Maniglio, D.; Ceresa, C.; Agostinacchio, F.; Caciagli, P.; Nollo, G.; Piccoli, F.; Caola, I.; Fracchia, L.; Tessarolo, F.
Rhamnolipid coating reduces microbial biofilm formation on titanium implants: an in vitro study / Tambone, E.; Bonomi, E.; Ghensi, P.; Maniglio, D.; Ceresa, C.; Agostinacchio, F.; Caciagli, P.; Nollo, G.; Piccoli, F.; Caola, I.; Fracchia, L.; Tessarolo, F.. - In: BMC ORAL HEALTH. - ISSN 1472-6831. - 2021/21:(2021), pp. 4901-4913. [10.1186/s12903-021-01412-7]
File in questo prodotto:
File Dimensione Formato  
Rhamnolipid-coating-reduces-microbial-biofilm-formation-on-titanium-implants-an-in-vitro-study2021BMC-Oral-HealthOpen-Access.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/294215
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
social impact