Catalisano, Geramita, and Gimigliano conjectured that the secant varities of the tangent developable of a d-Veronese embedding of n-dimensional projective space has always the expected dimension, except when d = 2, s low or d = 3 and n = 2, 3, 4. In this paper we prove their conjecture when n = 2 and n = 3.
On the secant varieties to the tangent developable of a Veronese variety
Ballico, Edoardo
2005-01-01
Abstract
Catalisano, Geramita, and Gimigliano conjectured that the secant varities of the tangent developable of a d-Veronese embedding of n-dimensional projective space has always the expected dimension, except when d = 2, s low or d = 3 and n = 2, 3, 4. In this paper we prove their conjecture when n = 2 and n = 3.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione