Catalisano, Geramita, and Gimigliano conjectured that the secant varities of the tangent developable of a d-Veronese embedding of n-dimensional projective space has always the expected dimension, except when d = 2, s low or d = 3 and n = 2, 3, 4. In this paper we prove their conjecture when n = 2 and n = 3.

On the secant varieties to the tangent developable of a Veronese variety

Ballico, Edoardo
2005-01-01

Abstract

Catalisano, Geramita, and Gimigliano conjectured that the secant varities of the tangent developable of a d-Veronese embedding of n-dimensional projective space has always the expected dimension, except when d = 2, s low or d = 3 and n = 2, 3, 4. In this paper we prove their conjecture when n = 2 and n = 3.
2005
2
Ballico, Edoardo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/29177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact