This paper presents a nonlinear parametrically excited cantilever beam with electromagnets. A parametrically excited two-degree-of-freedom (2-DOF) system with linear time-varying stiffness, nonlinear cubic stiffness, nonlinear cubic parametric stiffness and nonlinear damping is considered. In previous studies the stability and bifurcation of the nonlinear parametrically excited 2-DOF were investigated through analytical, semi-analytical and numerical methods. Unlike previous studies, in this contribution the system's response amplitude and phase at parametric resonance and parametric combination resonance are demonstrated experimentally and some novel results are discussed. Experimental and analytical amplitude-frequency plots are presented to show the stable solutions. Solutions for the system response are presented for specific values of parametric excitation frequency and the energy transfer between modes of vibrations is observed. The results presented in this paper prove that the bifurcation point and hence the bandwidth of the parametric resonance can be predicted correctly with the proposed analytical method. The proposed nonlinear parametrically excited 2-DOF can be used to design Micro ElectroMechanical Systems (MEMS) actuators and sensors. Validating the experimental results with the theory can improve the efficiency of these electrical systems.
Parametrically Excited Nonlinear Two-Degree-of-Freedom Electromechanical Systems / Zaghari, B.; Kniffka, T.; Levett, C.; Rustighi, E.. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6588. - 1264:(2019), pp. 012024.1-012024.8. (Intervento presentato al convegno RASD 2019 tenutosi a Valpre, Lyon nel 15th-17th April 2019) [10.1088/1742-6596/1264/1/012024].
Parametrically Excited Nonlinear Two-Degree-of-Freedom Electromechanical Systems
Rustighi E.
2019-01-01
Abstract
This paper presents a nonlinear parametrically excited cantilever beam with electromagnets. A parametrically excited two-degree-of-freedom (2-DOF) system with linear time-varying stiffness, nonlinear cubic stiffness, nonlinear cubic parametric stiffness and nonlinear damping is considered. In previous studies the stability and bifurcation of the nonlinear parametrically excited 2-DOF were investigated through analytical, semi-analytical and numerical methods. Unlike previous studies, in this contribution the system's response amplitude and phase at parametric resonance and parametric combination resonance are demonstrated experimentally and some novel results are discussed. Experimental and analytical amplitude-frequency plots are presented to show the stable solutions. Solutions for the system response are presented for specific values of parametric excitation frequency and the energy transfer between modes of vibrations is observed. The results presented in this paper prove that the bifurcation point and hence the bandwidth of the parametric resonance can be predicted correctly with the proposed analytical method. The proposed nonlinear parametrically excited 2-DOF can be used to design Micro ElectroMechanical Systems (MEMS) actuators and sensors. Validating the experimental results with the theory can improve the efficiency of these electrical systems.File | Dimensione | Formato | |
---|---|---|---|
2019_Zaghari_2DOF.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione