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Abstract. This paper presents a nonlinear parametrically excited cantilever beam with
electromagnets. A parametrically excited two-degree-of-freedom (2-DOF) system with linear
time-varying stiffness, nonlinear cubic stiffness, nonlinear cubic parametric stiffness and
nonlinear damping is considered. In previous studies the stability and bifurcation of the
nonlinear parametrically excited 2-DOF were investigated through analytical, semi-analytical
and numerical methods. Unlike previous studies, in this contribution the system’s response
amplitude and phase at parametric resonance and parametric combination resonance are
demonstrated experimentally and some novel results are discussed. Experimental and analytical
amplitude-frequency plots are presented to show the stable solutions. Solutions for the system
response are presented for specific values of parametric excitation frequency and the energy
transfer between modes of vibrations is observed. The results presented in this paper prove that
the bifurcation point and hence the bandwidth of the parametric resonance can be predicted
correctly with the proposed analytical method. The proposed nonlinear parametrically excited
2-DOF can be used to design Micro ElectroMechanical Systems (MEMS) actuators and sensors.
Validating the experimental results with the theory can improve the efficiency of these electrical
systems.

1. Introduction
The majority of research on parametric excitation (PE) addresses systems with undesirable
excitations. Typical examples for technical systems which suffer from PE are pantographs [1],
wind-turbines [2] and asymmetric rotors [3]. However, PE can be exploited for energy
harvesting [4]. Parametric excitation at anti-resonance can be exploited to reduce vibration.
Dohnal [5] presented the stability of a linear multi degree of freedom system and vibration
suppression by employing variable-stiffness. PE vibrations often require attention, since they
differ significantly from externally excited (forced) vibrations. While the amplitudes of vibrations
increase linearly over time at an ordinary resonance, they increase exponentially over time at
a so-called parametric resonance (PR). This is due to an instability of a system’s rest position
caused by PE. Second, the vibrations’ amplitudes at PRs are only limited by non-linearities
which in most technical systems are small. Thus vibration amplitudes generally are much larger
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Figure 1: Experimental set-up consisting of a cantilever beam and an electromagnetic system.

at PRs than in ordinary resonance cases. Third, PRs are very narrow compared to ordinary
resonances, but even low degree of freedom systems may experience multiple PRs.

The increasing computational power available and improvements in user friendly simulation
software have led to a better understanding, and hence to a growing number of systems actively
using PRs. However, for MDOF systems little progress has been made regarding both analytical
and numerical methods for investigation. Partly this is caused by the problem of choosing a
meaningful reduction of the systems phase space to investigate and display the results. The
quasi-modal reduction of the phase space presented in [6] solves this problem by reducing MDOF
models to one degree of freedom (1-DOF) models at PR. This enables the investigation of non-
linear MDOF PE systems analytically, and to display the results of analytical and numerical
investigations.

While recently advances have been made explaining and describing the behaviour of PE
systems at PR analytically and numerically (e.g. [7]), these investigations lack validation with
physical experiments. This paper presents analytical and experimental results for a 2-DOF
nonlinear PE system together.

2. Modelling
A clamped-free cantilever beam with an electromagnetic system and two masses is shown in
Figure 1. A controllable current is generated and flows through the coils to generate time-
varying and nonlinear stiffness and damping [8]. The electromagnetic set-up was modified based
on the work of Dohnal [9]. The modified test rig was used to exploit parametric excitation for
vibration energy harvesting [4]. For the study presented in this paper the extra mass is added
to change the ratio between the first and the second resonance. The mechanical properties,
dimensions of the cantilever beam, and the electromagnetic system are shown in Table 1. A
Two Degree of Freedom (2-DOF) model of this NPE system is presented in Figure 2. In Figure
2, k02 and k12 are the linear stiffnessess. k01 has linear and nonlinear stiffness components,

k01 = k01,lin + k01,nlinx1
2, (1)

and the time-varying and nonlinear stiffness is

k1 = kPE,1,lin + kPE,1,nlinx1
2. (2)

The equation of motion for the model shown in Figure 2 is

Mẍ + Cẋ + Klinx + KPE,1,lin cos(ΩPEt)x + Knlinx3 + KPE,1,nlin cos(ΩPEt)x
3 = 0, (3)



RASD

IOP Conf. Series: Journal of Physics: Conf. Series 1264 (2019) 012024

IOP Publishing

doi:10.1088/1742-6596/1264/1/012024

3

Table 1: Mechanical properties and dimensions.

Property Values Units
Radius of the magnets 0.015 m
Residual magnetic flux density (Br) 1.1 T
Permeability (µ0) 4 × π × 10−7 N A−2

Inner radius of the coil (r1) 0.0085 m
Outer radius of the coil (r2) 0.0225 m
Mean radius of the coil (rc) 0.0135 m
Number of turns of in coil (N) 485 -
Length of wire in one rotation (lw) 0.078 m
Diameter of the coil (Dw) 0.00071 m
Height of the coil with shield (hcoil) 0.02 m
Coordinate for coil (z1) 0.007 m
Coordinate for coil (z2) -0.007 m
Resistance of the coil (Rcoil) 1.91 Ohm
Inductance of the coil (Lcoil) 0.00064 kg m2 s2 A2

Load resistor (R) 0.1 Ohm
Width of the beam (bb) 0.01 m
Thickness of the beam (tb) 0.002 m
Measured mass 1 (m1m) 0.07 kg
Measured mass 2 (m2m) 0.658 kg
Half of the distance between the coils (h) 0.03 m
Measured first natural frequency of the beam with masses 30.45 rad s−1

and Ic = 0 (ωn1,exp)
Measured second natural frequency of the beam with masses 55.13 rad s−1

and Ic = 0 (ωn2,exp)

m m

c            c             c

k             k              k 02                 12                   01    

 02                12                  01

2                   1

k1
x             x2                   1

Figure 2: Mechanical two degree of freedom, lumped mass model of the experimental system in
Figure 1.

where the overdot represents a derivative with respect to time t, and where the mass

displacements are x =

[
x1

x2

]
. The mass matrix M is

M =

[
m1 0
0 m2

]
. (4)
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The damping matrix C is

C =

[
c01 + c12 −c12

−c12 c12 + c02

]
. (5)

The stiffness matrix has linear, linear time-varying, and nonlinear components:

Klin =

[
k01,lin + k12 −k12

−k12 k02 + k12

]
, (6)

KPE,1,lin =

[
kPE,1,lin 0

0 0

]
, (7)

Knlin =

[
k01,nlin 0

0 0

]
, (8)

KPE,1,nlin =

[
kPE,1,nlin 0

0 0

]
. (9)

3. Model calibration
In order to find k01,lin, k12, k02, m1, and m2 based on the experimental modal analysis, several
impact tests were conducted. The first natural frequency 30.458rad s−1 and the second natural
frequency 55.14rad s−1, when IDC=0A were flowing in the coils were measured. Similar tests were
carried out when IDC=1A were flowing in the coils, and the first natural frequency 31.77rad s−1

and the second natural frequency 58.46rad s−1 were measured. The impact tests were applied in
a way that the beam displacement was small and hence the effect of nonlinear parameters were
minimised and the coherence was reduced.

Eigenvalues for the first and the second mode was obtained from the experimental tests.
Given that the damping is assumed to be zero the eigenvalues are pure imaginary and the

eigenvectors are real. The eigenvalue problem can be simplified to

(Klin − ω2M)Φ = 0. (10)

ω can be found from det
∣∣Klin − ω2M

∣∣ = 0,

ω1,2 =
(k02 + k12)m1 + (k01,lin + k12)m2

2m1m2

±

√(
(k02 + k12)2m2

1 + (k01,lin + k12)2m2
2 − 2(k02 + k12)(k01,lin + k12)m1m2 + 4(k12)2m1m2

)
2m1m2

(11)

so the eigenvalues are:

Φ =

[(
φ1

φ2

)
1

(
φ1

φ2

)
2

]
(12)

From Eq. (10) [
(−m1ω

2 + k01,lin + k12)φ1 − k12φ2

−k12φ1 + (−m2ω
2 + k02 + k12)φ2

]
= 0 (13)

We can say for the first resonance(
φ1

φ2

)
1

=
k12

−m1ω2
1 + k01,lin + k12

= 6.6 (14)
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Table 2: System parameters

Parameters Values Units
m1 0.2 kg
m2 0.67 kg
k12,lin 40 Nm−1

k02,lin 2200 Nm−1

k01,lin 168.23 Nm−1

kPE,1,lin 12.61 Nm−1

k01,nlin 2.3 × 105 Nm−3

kPE,1,nlin 1.8 × 104 Nm−3

and for the second resonance(
φ1

φ2

)
2

=
−m2ω

2
2 + k02 + k12

k12
= −0.08 (15)

From Eqs. (14) and (15) and the analytical expression for linear stiffness due to electromagnets
we can find the system parameters as stated in Table 2. k01,lin and k01,nlin are calculated
analytically and they are function of coils parameters and DC current flowing in the coils, and
k01,lin = IDCH1 (H1 refers to Eq. (16) in [8]). k01,nlin = IDCH2 (H2 refers to Eq. (17) in [8]).
kPE,1,lin and kPE,1,nlin are function of AC current, where kPE,1,lin = IACH1 and kPE,1,nlin =

IACH2. These linear and nonlinear stiffness are calculated for IDC=1A and IAC=0.075A and
the results are stated in Table 2.

The analytical solution presented in this paper is defined for a system with small damping.
Here, damping is found based on the experimental tests. Damping ratios of the first and the
second mode, ζ1 = 0.000513 and ζ2 = 0.0003, were measured from the impact tests with a
circle-fit method. Hence, we considered the damping to be negligible.

4. Analytical study
The eigenvectors stated Eq. (14) and Eq. (15) can be mass normalised so that

ϕT
i Mϕi = 1 (16)

leads to ϕ1 = [2.1552 0.3255]T and ϕ2 = [0.1025 −1.2204]T. These mass normalised eigenvectors
can be summarised in the modal matrix Φ = [ϕ1 ϕ2 ... ϕn]. This matrix is employed for a
transformation of the displacement vector x into the quasi-modal displacements z by

x = x∗Φz. (17)

The scaling parameter x∗ is utilised in order to have dimensionless quasi-modal displacements z.
Here x∗ = 10−3 m is set, which enforces an appropriate scaling when evaluating the differential
equations numerically. For a linear time-invariant system, z are the natural modes. Furthermore,
this transformation decouples the differential equations for this linear, time-invariant system.
However, Eq. (3) cannot be decoupled, because the transformation above couples the equations
of motion by the terms due to the parametrical excitation. Nonetheless, for a PE system the
quasi-modal displacements zi represent the vibrations regarding each mode. Hence, the term
quasi-modal is used [7]. The eigentime τ = ΩPEt is also introduced to normalise time. Applying
the above described quasi-modal transformation, Eq. (3) leads to

z′′ + Zz′ + Λz + Λnlin(z)z + E(z) cos(τ)z = 0. (18)
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Table 3: Relevant quasi-modally reduced parameters.

Parameters Values
κ2

1 2.805
ε1,lin 127.8
ε1,nlin 0.387

Each line of this matrix equation states the vibration of one mode. At PR predominantly the
mode i can be observed which agrees with the PR frequency ΩPR,n = 2ωi

n . Similarly, both
modes i and j can be observed at Parametric Combination Resonances PCRs with the angular
centre frequency ΩPCR,n =

ωi+ωj

n . The quadratic and bilinear terms in Λnlin(z) and E(z) can be
set to zero except for terms containing z2

i because the dominant mode’s amplitude is sufficiently
larger than the one of all other modes. This reduces the multi-dimensional problem of Eq. (18)
to a scalar one. Consequently, at a PR the vibrations of the n bodies of the MDOF system can
be approximated by xk ≈ x∗ϕikzi for the kth body where, i refers to the quasi-mode ϕi and
ϕik is its kth element. Averaging according to Krylov-Bogolyubov [10] over one period of zi(τ)
ultimately leads to

zi ≈ r̄i cos(2τ + ψ̄i), r̄i =

√
8πωi∆f + 2εi,lin

−2εi,nlin + 3κ2
i (1 − 2π∆f

ωi
)
, ψ̄i =

π

2
(19)

assuming the deviation of the PE frequency from the centre frequency of the PR to be very small
(see [7] for a detailed explanation). This can be considered if the amplitude of the only stable
bifurcation within the instability band of the rest position is at the ith first PR fPE = 2fi. Here
∆f = f − fPE denotes the deviation from the PR centre frequency. For a 2-DOF system, κ2

i is
the first (i.e. upper left) element of Λnlin in case of i = 1 and the last element (i.e. lower right)
in case of i = 2. In analogy, εi,lin and εi,nlin are the first elements (in case of i = 1) or the last
elements (in case of i = 2) of the linear part and the nonlinear part of E. At the first PR for
the parameters stated in Table 2 the relevant quasi-modaly reduces parameters take the values
listed in Table 3. Note that by Eq. (19) the frequency of the bifurcated solution is predicted
to be twice the PE frequency and the phase shift to be ψ̄i = π

2 which agrees with numerical
studies.

5. Experimental results
Displacement of the first and the second mass was found from recorded velocity and acceleration
at two points on the cantilever beam. The accelerometer and the vibrometer are shown in
Figure 1. The accelerometer was placed at 0.105m from support end, and the vibrometer was
measuring the beam velocity at 0.305m from support end. Due to the influence of magnets, the
accelerometer was not placed close to the second mass. For future studies several vibrometers
are needed to look at the vibration at different positions.

The displacement of the first mass m1m was found from the recorded vibration when the
parametric frequency was increased for sweep up tests from 5Hz-20Hz. Sweep down tests were
also carried out from high to low frequencies. In this experiment, the parametric frequency was
increased or decreased in increments of 0.1Hz.

The tests were started with initial conditions of z(0) = 0.01m and as the steady-state response
was achieved the tests were carried out with the previous state. The recorded vibrations is
integrated to find the displacement for sweep up and down tests (Figure 3). The recorded
displacement is multiplied by 1.43 to find the displacement of m1m.

Displacement of the first mass m1m at different parametric frequencies are shown in Figure 4.
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Figure 3: Measured displacement at the location of the vibrometer. The parametric frequencies
indicated on top of the graphs are selected to be close to twice the first natural frequency
(10.2Hz). Sweep up (a) and down (b) is shown at different parametric frequencies. (b) At each
frequency the data was recorded for 20 seconds. (b) The duration of the tests are varied until
the steady-state response was observed.

Figure 4: Displacement of the first massm1m at different parametric frequencies. Stable solutions
are presented analytically for the responses near twice the natural frequency of the first mode.
The experimental sweep up and down results show the response at near twice the first natural
frequency, combination of the first and the second frequency and twice the second natural
frequency.

For the experimental results, Fourier decomposition was employed to extract the solution with
a frequency equal to the first resonance.

At the first PR the analytical result Eq. (19) agrees with the experiment (see Fig. 4a). The
bifurcation point frequency fbranch = 4.74 Hz is predicted correctly by the analytical result.
The maximum amplitude at the PR is underestimated by the analytical result. This can be
explained most likely by the fact that Eq. (19) is derived by the assumption that εi,lin � 1 while
here ε1,lin = 127.8. For PCRs the method presented in [7] is not applicable. Further research is
necessary to approximate vibrations at PCRs analytically. At the second PR the bandwidth and
the amplitudes are to small to compare analytical and experimental results. Future experiments
should aim at tuning the parameters to have a broader bandwidth and higher amplitudes at the
second PR in order to compare analytical and experimental results.
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6. Conclusion
In this paper, a 2-DOF parametrically excited system was introduced. The experimental set-up
and the equation of motion was presented. Steady-state solutions at PR were approximated
using analytical approaches and were shown with the experimental results. Comparing the
analytical and the experimental results show both the capabilities and the limits of the analytical
approximation. The assumption of small parametric excitation εi,lin � 1 for deriving the
analytical approximation is heavily violated. Consequently, the vibration amplitudes are
underestimated. However, the bifurcation point and hence the bandwidth of the parametric
resonance can be predicted correctly. Approximating the vibrations at parametric combination
resonances analytically so far is not possible with the method presented. This is a future task
to do. A comparison of experimental and analytical results could not be given for the second
parametric resonance because of its small bandwidth and small amplitudes. Future experiments
should target a broader second PR with higher amplitudes in order to be able to compare the
results with the analytical approximation.
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