In this paper we consider the one-dimensional blood flow model with discontinuous mechanical and geometrical properties, as well as passive scalar transport, proposed in [E.F. Toro and A. Siviglia. Flow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutions. Communications in Computational Physics. 13(2), 361-385, 2013], completing the mathematical analysis by providing new propositions and new proofs of relations valid across different waves. Next we consider a first order DOT Riemann solver, proposing an integration path that incorporates the passive scalar and proving the well-balanced properties of the resulting numerical scheme for stationary solutions. Finally we describe a novel and simple well-balanced, second order, non-linear numerical scheme to solve the equations under study; by using suitable test problems for which exact solutions are available, we assess the well-balanced properties of the scheme, its capacity to provide accurate solutions in challenging flow conditions and its accuracy.
One-Dimensional Blood Flow with Discontinuous Properties and Transport: Mathematical Analysis and Numerical Schemes / Spilimbergo, Alessandra; Toro, Eleuterio Francisco; Müller, Lucas Omar. - In: COMMUNICATIONS IN COMPUTATIONAL PHYSICS. - ISSN 1815-2406. - 2121, 29:3(2021), pp. 649-697. [10.4208/cicp.OA-2020-0132]
One-Dimensional Blood Flow with Discontinuous Properties and Transport: Mathematical Analysis and Numerical Schemes
Spilimbergo, Alessandra;Toro, Eleuterio Francisco;Müller, Lucas Omar
2021-01-01
Abstract
In this paper we consider the one-dimensional blood flow model with discontinuous mechanical and geometrical properties, as well as passive scalar transport, proposed in [E.F. Toro and A. Siviglia. Flow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutions. Communications in Computational Physics. 13(2), 361-385, 2013], completing the mathematical analysis by providing new propositions and new proofs of relations valid across different waves. Next we consider a first order DOT Riemann solver, proposing an integration path that incorporates the passive scalar and proving the well-balanced properties of the resulting numerical scheme for stationary solutions. Finally we describe a novel and simple well-balanced, second order, non-linear numerical scheme to solve the equations under study; by using suitable test problems for which exact solutions are available, we assess the well-balanced properties of the scheme, its capacity to provide accurate solutions in challenging flow conditions and its accuracy.File | Dimensione | Formato | |
---|---|---|---|
PublishedArticle.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione