We consider a class of non-quasi-convex frame indifferent energy densities that includes Ogden-type energy densities for nematic elastomers. For the corresponding geometrically linear problem, we provide an explicit minimizer of the energy functional satisfying a non-trivial boundary condition. Other attainment results, both for the nonlinear and the linearised model, are obtained by using the theory of convex integration introduced by Müller and Šverák in the context of crystalline solids.

Attainment results for nematic elastomers / Agostiniani, Virginia; Maso, Gianni Dal; Desimone, Antonio. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 2015, 145:4(2015), pp. 669-701. [10.1017/S0308210515000128]

Attainment results for nematic elastomers

Agostiniani, Virginia;
2015-01-01

Abstract

We consider a class of non-quasi-convex frame indifferent energy densities that includes Ogden-type energy densities for nematic elastomers. For the corresponding geometrically linear problem, we provide an explicit minimizer of the energy functional satisfying a non-trivial boundary condition. Other attainment results, both for the nonlinear and the linearised model, are obtained by using the theory of convex integration introduced by Müller and Šverák in the context of crystalline solids.
2015
4
Agostiniani, Virginia; Maso, Gianni Dal; Desimone, Antonio
Attainment results for nematic elastomers / Agostiniani, Virginia; Maso, Gianni Dal; Desimone, Antonio. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 2015, 145:4(2015), pp. 669-701. [10.1017/S0308210515000128]
File in questo prodotto:
File Dimensione Formato  
Agostiniani_DalMaso_DeSimone_2015.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 312 kB
Formato Adobe PDF
312 kB Adobe PDF   Visualizza/Apri
Attainment_results_for_nematic_elastomers.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 379.13 kB
Formato Adobe PDF
379.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/285725
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact