Wrinkling is a ubiquitous surface phenomenon in many biological tissues and is believed to play an important role in arterial health. As arteries are highly nonlinear, anisotropic, multilayered composite systems, it is necessary to investigate wrinkling incorporating these material characteristics. Several studies have examined surface wrinkling mechanisms with nonlinear isotropic material relationships. Nevertheless, wrinkling associated with anisotropic constitutive models such as Ogden–Gasser–Holzapfel (OGH), which is suitable for soft biological tissues, and in particular arteries, still requires investigation. Here, the effects of OGH parameters such as fibers’ orientation, stiffness, and dispersion on the onset of wrinkling, wrinkle wavelength and amplitude are elucidated through analysis of a bilayer system composed of a thin, stiff neo-Hookean membrane and a soft OGH substrate subjected to compression. Critical contractile strain at which wrinkles occur is predicted using both finite element analysis and analytical linear perturbation approach. Results suggest that besides stiffness mismatch, anisotropic features associated with fiber stiffness and distribution might be used in natural layered systems to adjust wrinkling and subsequent folding behaviors. Further analysis of a bilayer system with fibers in the (x–y) plane subjected to compression in the x direction shows a complex dependence of wrinkling strain and wavelength on fiber angle, stiffness, and dispersion. This behavior is captured by an approximation utilizing the linearized anisotropic properties derived from OGH model. Such understanding of wrinkling in this artery wall-like system will help identify the role of wrinkling mechanisms in biological artery in addition to the design of its synthetic counterparts.

Wrinkling instabilities for biologically relevant fiber-reinforced composite materials with a case study of Neo-Hookean/Ogden–Gasser–Holzapfel bilayer / Nguyen, N.; Nath, N.; Deseri, L.; Tzeng, E.; Velankar, S. S.; Pocivavsek, L.. - In: BIOMECHANICS AND MODELING IN MECHANOBIOLOGY. - ISSN 1617-7959. - ELETTRONICO. - 19:6(2020), pp. 2375-2395. [10.1007/s10237-020-01345-0]

Wrinkling instabilities for biologically relevant fiber-reinforced composite materials with a case study of Neo-Hookean/Ogden–Gasser–Holzapfel bilayer

Deseri L.;
2020-01-01

Abstract

Wrinkling is a ubiquitous surface phenomenon in many biological tissues and is believed to play an important role in arterial health. As arteries are highly nonlinear, anisotropic, multilayered composite systems, it is necessary to investigate wrinkling incorporating these material characteristics. Several studies have examined surface wrinkling mechanisms with nonlinear isotropic material relationships. Nevertheless, wrinkling associated with anisotropic constitutive models such as Ogden–Gasser–Holzapfel (OGH), which is suitable for soft biological tissues, and in particular arteries, still requires investigation. Here, the effects of OGH parameters such as fibers’ orientation, stiffness, and dispersion on the onset of wrinkling, wrinkle wavelength and amplitude are elucidated through analysis of a bilayer system composed of a thin, stiff neo-Hookean membrane and a soft OGH substrate subjected to compression. Critical contractile strain at which wrinkles occur is predicted using both finite element analysis and analytical linear perturbation approach. Results suggest that besides stiffness mismatch, anisotropic features associated with fiber stiffness and distribution might be used in natural layered systems to adjust wrinkling and subsequent folding behaviors. Further analysis of a bilayer system with fibers in the (x–y) plane subjected to compression in the x direction shows a complex dependence of wrinkling strain and wavelength on fiber angle, stiffness, and dispersion. This behavior is captured by an approximation utilizing the linearized anisotropic properties derived from OGH model. Such understanding of wrinkling in this artery wall-like system will help identify the role of wrinkling mechanisms in biological artery in addition to the design of its synthetic counterparts.
2020
6
Nguyen, N.; Nath, N.; Deseri, L.; Tzeng, E.; Velankar, S. S.; Pocivavsek, L.
Wrinkling instabilities for biologically relevant fiber-reinforced composite materials with a case study of Neo-Hookean/Ogden–Gasser–Holzapfel bilayer / Nguyen, N.; Nath, N.; Deseri, L.; Tzeng, E.; Velankar, S. S.; Pocivavsek, L.. - In: BIOMECHANICS AND MODELING IN MECHANOBIOLOGY. - ISSN 1617-7959. - ELETTRONICO. - 19:6(2020), pp. 2375-2395. [10.1007/s10237-020-01345-0]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/285623
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact