We report first measurements of time-resolved absolute CO number densities and rotational temperatures in a non-thermal CO2 plasma environment using TALIF with a nanosecond pulsed laser. Two-photon excitation spectra from the B1Σ+(v′ = 0) ← X1 Σ+ (v″ = 0) Q-branch are recorded and fitted to extract rotational temperatures. Absolute number densities are determined from the frequency-integrated excitation spectrum. The plasma under investigation is a pulsed glow discharge operated at a frequency of 60 Hz with an plasma-on time of 5 ms per plasma cycle, 50 mA plasma current and a pressure of 6.67 mbar. CO number densities range from (2.6 ± 0.6) × 1022 m-3 to (1.2 ± 0.3) × 1022 m-3, while rotational temperatures range from 370 ± 40 K to 700 ± 70 K at the beginning and end of the plasma-on phase, respectively. Our results show fair agreement with literature data.
Absolute CO number densities measured using TALIF in a non-thermal plasma environment / Damen, M. A.; Hage, D. A. C. M.; Van De Steeg, A. W.; Martini, L. M.; Engeln, R.. - In: PLASMA SOURCES SCIENCE & TECHNOLOGY. - ISSN 0963-0252. - 2019, 28:11(2019), pp. 115006.1-115006.7. [10.1088/1361-6595/ab496e]
Absolute CO number densities measured using TALIF in a non-thermal plasma environment
Martini L. M.;
2019-01-01
Abstract
We report first measurements of time-resolved absolute CO number densities and rotational temperatures in a non-thermal CO2 plasma environment using TALIF with a nanosecond pulsed laser. Two-photon excitation spectra from the B1Σ+(v′ = 0) ← X1 Σ+ (v″ = 0) Q-branch are recorded and fitted to extract rotational temperatures. Absolute number densities are determined from the frequency-integrated excitation spectrum. The plasma under investigation is a pulsed glow discharge operated at a frequency of 60 Hz with an plasma-on time of 5 ms per plasma cycle, 50 mA plasma current and a pressure of 6.67 mbar. CO number densities range from (2.6 ± 0.6) × 1022 m-3 to (1.2 ± 0.3) × 1022 m-3, while rotational temperatures range from 370 ± 40 K to 700 ± 70 K at the beginning and end of the plasma-on phase, respectively. Our results show fair agreement with literature data.File | Dimensione | Formato | |
---|---|---|---|
Damen2019.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
842.63 kB
Formato
Adobe PDF
|
842.63 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione