The $X$-rank of a point $p$ in projective space is the minimal number of points of an algebraic variety $X$ whose linear span contains $p$. This notion is naturally submultiplicative under tensor product. We study geometric conditions that guarantee strict submultiplicativity. We prove that in the case of points of rank two, strict submultiplicativity is entirely characterized in terms of the trisecant lines to the variety. Moreover, we focus on the case of curves: we prove that for curves embedded in an even-dimensional projective space, there are always points for which strict submultiplicativity occurs, with the only exception of rational normal curves.

Geometric conditions for strict submultiplicativity of rank and border rank / Ballico, Edoardo; Bernardi, Alessandra; Gesmundo, Fulvio; Oneto, Alessandro; Ventura, Emanuele. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 1618-1891. - 200:1(2021), pp. 187-210. [10.1007/s10231-020-00991-6]

Geometric conditions for strict submultiplicativity of rank and border rank

Edoardo Ballico;Alessandra Bernardi;Alessandro Oneto;
2021-01-01

Abstract

The $X$-rank of a point $p$ in projective space is the minimal number of points of an algebraic variety $X$ whose linear span contains $p$. This notion is naturally submultiplicative under tensor product. We study geometric conditions that guarantee strict submultiplicativity. We prove that in the case of points of rank two, strict submultiplicativity is entirely characterized in terms of the trisecant lines to the variety. Moreover, we focus on the case of curves: we prove that for curves embedded in an even-dimensional projective space, there are always points for which strict submultiplicativity occurs, with the only exception of rational normal curves.
2021
1
Ballico, Edoardo; Bernardi, Alessandra; Gesmundo, Fulvio; Oneto, Alessandro; Ventura, Emanuele
Geometric conditions for strict submultiplicativity of rank and border rank / Ballico, Edoardo; Bernardi, Alessandra; Gesmundo, Fulvio; Oneto, Alessandro; Ventura, Emanuele. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 1618-1891. - 200:1(2021), pp. 187-210. [10.1007/s10231-020-00991-6]
File in questo prodotto:
File Dimensione Formato  
BBGOV-gometric_conditions.pdf

Open Access dal 27/05/2021

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 538.91 kB
Formato Adobe PDF
538.91 kB Adobe PDF Visualizza/Apri
Ballico2021_Article_GeometricConditionsForStrictSu.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.48 MB
Formato Adobe PDF
5.48 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/284846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact