Ser/Thr protein kinase CK2 is involved in several fundamental processes that regulate the cell life, such as cell cycle progression, gene expression, cell growth, and differentiation and embryogenesis. In various cancers, CK2 shows a markedly elevated activity that has been associated with conditions that favor the onset of the tumor phenotype. This prompts to numerous studies aimed at the identification of compounds that are able to inhibit the catalytic activity of this oncogenic kinase, in particular, of ATP-competitive inhibitors. The many available crystal structures indicate that this enzyme owns some regions of remarkable flexibility which were associated to important functional properties. Of particular relevance is the flexibility, unique among protein kinases, of the hinge region and the following helix alpha D. This study attempts to unveil the structural bases of this characteristic of CK2. We also analyze some controversial issues concerning the functional interpretation of structural data on maize and human CK2 and try to recognize what is reasonably established and what is still unclear about this enzyme. This analysis can be useful also to outline some principles at the basis of the development of effective ATP-competitive CK2 inhibitors.
Structural and functional determinants of protein kinase CK2 alpha: facts and open questions / Battistutta, R.; Lolli, G.. - In: MOLECULAR AND CELLULAR BIOCHEMISTRY. - ISSN 0300-8177. - STAMPA. - 356:(2011), pp. 67-73. [10.1007/s11010-011-0939-6]
Structural and functional determinants of protein kinase CK2 alpha: facts and open questions
G. Lolli
2011-01-01
Abstract
Ser/Thr protein kinase CK2 is involved in several fundamental processes that regulate the cell life, such as cell cycle progression, gene expression, cell growth, and differentiation and embryogenesis. In various cancers, CK2 shows a markedly elevated activity that has been associated with conditions that favor the onset of the tumor phenotype. This prompts to numerous studies aimed at the identification of compounds that are able to inhibit the catalytic activity of this oncogenic kinase, in particular, of ATP-competitive inhibitors. The many available crystal structures indicate that this enzyme owns some regions of remarkable flexibility which were associated to important functional properties. Of particular relevance is the flexibility, unique among protein kinases, of the hinge region and the following helix alpha D. This study attempts to unveil the structural bases of this characteristic of CK2. We also analyze some controversial issues concerning the functional interpretation of structural data on maize and human CK2 and try to recognize what is reasonably established and what is still unclear about this enzyme. This analysis can be useful also to outline some principles at the basis of the development of effective ATP-competitive CK2 inhibitors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione