Usually, spectroscopic data on proteins in solution are interpreted at molecular level on the basis of the three-dimensional structures determined in the crystalline state. While it is widely recognized that the protein crystal structures are reliable models for the solution 3D structures, nevertheless it is also clear that sometimes the crystallization process can introduce some "artifacts" that can make difficult or even flaw the attempt to correlate the properties in solution with those in the crystalline state. In general, therefore, it would be desirable to identify some sort of control. In the case of the spectroscopic properties of proteins, the most straightforward check is to acquire data not only in solution but also on the crystals. In this regard, the Green Fluorescent Protein (GFP) is an interesting case in that a massive quantity of data correlating the spectroscopic properties in solution with the structural information in the crystalline state is available in literature. Despite that, a relatively limited amount of spectroscopic studies on single crystals of GFP or related FPs have been described. Here we review and discuss the main spectroscopic (in solution) and structural (in crystals) studies performed on the GFP and related fluorescent proteins, together with the spectroscopic analyses on various FPs members in the crystalline state. One main conclusion is that "in cristallo" spectroscopic studies are useful in providing new opportunities for gathering information not available in solution and are highly recommended to reliably correlate solution properties with structural features. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Structure and single crystal spectroscopy of Green Fluorescent Proteins / Bettati, S; Pasqualetto, E; Lolli, G; Campanini, B; R., Battistutta. - In: BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS. - ISSN 1570-9639. - STAMPA. - 1814:(2011), pp. 824-833. [10.1016/j.bbapap.2010.10.002]
Structure and single crystal spectroscopy of Green Fluorescent Proteins
LOLLI G;
2011-01-01
Abstract
Usually, spectroscopic data on proteins in solution are interpreted at molecular level on the basis of the three-dimensional structures determined in the crystalline state. While it is widely recognized that the protein crystal structures are reliable models for the solution 3D structures, nevertheless it is also clear that sometimes the crystallization process can introduce some "artifacts" that can make difficult or even flaw the attempt to correlate the properties in solution with those in the crystalline state. In general, therefore, it would be desirable to identify some sort of control. In the case of the spectroscopic properties of proteins, the most straightforward check is to acquire data not only in solution but also on the crystals. In this regard, the Green Fluorescent Protein (GFP) is an interesting case in that a massive quantity of data correlating the spectroscopic properties in solution with the structural information in the crystalline state is available in literature. Despite that, a relatively limited amount of spectroscopic studies on single crystals of GFP or related FPs have been described. Here we review and discuss the main spectroscopic (in solution) and structural (in crystals) studies performed on the GFP and related fluorescent proteins, together with the spectroscopic analyses on various FPs members in the crystalline state. One main conclusion is that "in cristallo" spectroscopic studies are useful in providing new opportunities for gathering information not available in solution and are highly recommended to reliably correlate solution properties with structural features. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione