We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure pco (L) described, for large widths, by the Kelvin equation psat - pco (L) = 2σcosθ/L, where θ is the contact angle at the side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped end θcap; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a complementary Kelvin equation Δp(L) = 2σsinθcap/L. On approaching the wetting temperature of the capillary cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and experimental results showing the continuous nature of condensation for θcap = 0 and the influence of corner menisci on adsorption isotherms are presented. © 2013 IOP Publishing Ltd.

The order of condensation in capillary grooves / Rascon, C.; Parry, A. O.; Nürnberg, R.; Pozzato, A.; Tormen, M.; Bruschi, L.; Mistura, G.. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - 25:19(2013), p. 192101. [10.1088/0953-8984/25/19/192101]

The order of condensation in capillary grooves

Nürnberg R.;Pozzato A.;
2013-01-01

Abstract

We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure pco (L) described, for large widths, by the Kelvin equation psat - pco (L) = 2σcosθ/L, where θ is the contact angle at the side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped end θcap; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a complementary Kelvin equation Δp(L) = 2σsinθcap/L. On approaching the wetting temperature of the capillary cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and experimental results showing the continuous nature of condensation for θcap = 0 and the influence of corner menisci on adsorption isotherms are presented. © 2013 IOP Publishing Ltd.
2013
19
Rascon, C.; Parry, A. O.; Nürnberg, R.; Pozzato, A.; Tormen, M.; Bruschi, L.; Mistura, G.
The order of condensation in capillary grooves / Rascon, C.; Parry, A. O.; Nürnberg, R.; Pozzato, A.; Tormen, M.; Bruschi, L.; Mistura, G.. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - 25:19(2013), p. 192101. [10.1088/0953-8984/25/19/192101]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/283513
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
  • OpenAlex ND
social impact