We consider the numerical approximation of axisymmetric mean curvature flow with the help of linear finite elements. In the case of a closed genus-1 surface we derive optimal error bounds with respect to the L2 - and H1 -norms for a fully discrete approximation. We perform convergence experiments to confirm the theoretical results and also present numerical simulations for some genus-0 and genus-1 surfaces, including for the Angenent torus.
A finite element error analysis for axisymmetric mean curvature flow / Barrett, John W; Deckelnick, Klaus; Nürnberg, Robert. - In: IMA JOURNAL OF NUMERICAL ANALYSIS. - ISSN 0272-4979. - 41:3(2021), pp. 1641-1667. [10.1093/imanum/draa020]
A finite element error analysis for axisymmetric mean curvature flow
Nürnberg, Robert
2021-01-01
Abstract
We consider the numerical approximation of axisymmetric mean curvature flow with the help of linear finite elements. In the case of a closed genus-1 surface we derive optimal error bounds with respect to the L2 - and H1 -norms for a fully discrete approximation. We perform convergence experiments to confirm the theoretical results and also present numerical simulations for some genus-0 and genus-1 surfaces, including for the Angenent torus.File | Dimensione | Formato | |
---|---|---|---|
schemeD.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
schemeD_preprint.pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.35 MB
Formato
Adobe PDF
|
1.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione