We present a parametric finite element approximation of two-phase flow. This free boundary problem is given by the Navier–Stokes equations in the two phases, which are coupled via jump conditions across the interface. Using a novel variational formulation for the interface evolution gives rise to a natural discretization of the mean curvature of the interface. The parametric finite element approximation of the evolving interface is then coupled to a standard finite element approximation of the two-phase Navier–Stokes equations in the bulk. Here enriching the pressure approximation space with the help of an XFEM function ensures good volume conservation properties for the two phase regions. In addition, the mesh quality of the parametric approximation of the interface in general does not deteriorate over time, and an equidistribution property can be shown for a semidiscrete continuous-in-time variant of our scheme in two space dimensions. Moreover, our finite element approximation can be shown to be unconditionally stable. We demonstrate the applicability of our method with some numerical results in two and three space dimensions.

A Stable Parametric Finite Element Discretization of Two-Phase Navier–Stokes Flow / Barrett, J. W.; Garcke, H.; Nürnberg, R.. - In: JOURNAL OF SCIENTIFIC COMPUTING. - ISSN 0885-7474. - 63:1(2015), pp. 78-117. [10.1007/s10915-014-9885-2]

A Stable Parametric Finite Element Discretization of Two-Phase Navier–Stokes Flow

Nürnberg R.
2015-01-01

Abstract

We present a parametric finite element approximation of two-phase flow. This free boundary problem is given by the Navier–Stokes equations in the two phases, which are coupled via jump conditions across the interface. Using a novel variational formulation for the interface evolution gives rise to a natural discretization of the mean curvature of the interface. The parametric finite element approximation of the evolving interface is then coupled to a standard finite element approximation of the two-phase Navier–Stokes equations in the bulk. Here enriching the pressure approximation space with the help of an XFEM function ensures good volume conservation properties for the two phase regions. In addition, the mesh quality of the parametric approximation of the interface in general does not deteriorate over time, and an equidistribution property can be shown for a semidiscrete continuous-in-time variant of our scheme in two space dimensions. Moreover, our finite element approximation can be shown to be unconditionally stable. We demonstrate the applicability of our method with some numerical results in two and three space dimensions.
2015
1
Barrett, J. W.; Garcke, H.; Nürnberg, R.
A Stable Parametric Finite Element Discretization of Two-Phase Navier–Stokes Flow / Barrett, J. W.; Garcke, H.; Nürnberg, R.. - In: JOURNAL OF SCIENTIFIC COMPUTING. - ISSN 0885-7474. - 63:1(2015), pp. 78-117. [10.1007/s10915-014-9885-2]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/283461
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact