We consider a fully practical finite element approximation of the following degenerate system ∂/∂tρ(u) - ∇.(α(u) ∇u) ∋ σ(u) |∇φ|2, ∇.(σ(u) ∇φ) = 0 subject to an initial condition on the temperature, u, and boundary conditions on both u and the electric potential, φ In the above ρu) is the enthalpy incorporating the latent heat of melting, α(u) > 0 is the temperature dependent heat conductivity, and σ(u) ≥ 0 is the electrical conductivity. The latter is zero in the frozen zone, u ≤ 0, which gives rise to the degeneracy in this Stefan system. In addition to showing stability bounds, we prove (subsequence) convergence of our finite element approximation in two and three space dimensions. The latter is non-trivial due to the degeneracy in σ(u) and the quadratic nature of the Joule heating term forcing the Stefan problem. Finally, some numerical experiments are presented in two space dimensions.

Finite element approximation of a Stefan problem with degenerate joule heating / Barrett, J. W.; Nürnberg, R.. - In: MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE. - ISSN 0764-583X. - 38:4(2004), pp. 633-652. [10.1051/m2an:2004030]

Finite element approximation of a Stefan problem with degenerate joule heating

Nürnberg R.
2004

Abstract

We consider a fully practical finite element approximation of the following degenerate system ∂/∂tρ(u) - ∇.(α(u) ∇u) ∋ σ(u) |∇φ|2, ∇.(σ(u) ∇φ) = 0 subject to an initial condition on the temperature, u, and boundary conditions on both u and the electric potential, φ In the above ρu) is the enthalpy incorporating the latent heat of melting, α(u) > 0 is the temperature dependent heat conductivity, and σ(u) ≥ 0 is the electrical conductivity. The latter is zero in the frozen zone, u ≤ 0, which gives rise to the degeneracy in this Stefan system. In addition to showing stability bounds, we prove (subsequence) convergence of our finite element approximation in two and three space dimensions. The latter is non-trivial due to the degeneracy in σ(u) and the quadratic nature of the Joule heating term forcing the Stefan problem. Finally, some numerical experiments are presented in two space dimensions.
4
Barrett, J. W.; Nürnberg, R.
Finite element approximation of a Stefan problem with degenerate joule heating / Barrett, J. W.; Nürnberg, R.. - In: MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE. - ISSN 0764-583X. - 38:4(2004), pp. 633-652. [10.1051/m2an:2004030]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/283419
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact