The lateral prefrontal cortex of primates (lPFC) plays a central role in complex cognitive behavior, in decision-making as well as in guiding top-down attention. However, how and where in lPFC such behaviorally relevant signals are computed is poorly understood. We analyzed neural recordings from chronic microelectrode arrays implanted in lPFC region 8Av/45 of two rhesus macaques. The animals performed a feature match-to-sample task requiring them to match both motion and color information in a test stimulus. This task allowed to separate the encoding of stimulus motion and color from their current behavioral relevance on a trial-by-trial basis. We found that upcoming motor behavior can be robustly predicted from lPFC activity. In addition, we show that 8Av/45 encodes the color of a visual stimulus, regardless of its behavioral relevance. Most notably, whether a color matches the searched-for color can be decoded independent of a trial’s motor outcome and while subjects detect unique feature conjunctions of color and motion. Thus, macaque area 8Av/45 computes, among other task-relevant information, the behavioral relevance of visual color features. Such a signal is most critical for both the selection of responses as well as the deployment of top-down modulatory signals, like feature-based attention.
The lateral prefrontal cortex of primates encodes stimulus colors and their behavioral relevance during a match-to-sample task / Schwedhelm, Philipp; Baldauf, Daniel; Treue, Stefan. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 10:1(2020), p. 4216. [10.1038/s41598-020-61171-3]
The lateral prefrontal cortex of primates encodes stimulus colors and their behavioral relevance during a match-to-sample task
Baldauf, Daniel;
2020-01-01
Abstract
The lateral prefrontal cortex of primates (lPFC) plays a central role in complex cognitive behavior, in decision-making as well as in guiding top-down attention. However, how and where in lPFC such behaviorally relevant signals are computed is poorly understood. We analyzed neural recordings from chronic microelectrode arrays implanted in lPFC region 8Av/45 of two rhesus macaques. The animals performed a feature match-to-sample task requiring them to match both motion and color information in a test stimulus. This task allowed to separate the encoding of stimulus motion and color from their current behavioral relevance on a trial-by-trial basis. We found that upcoming motor behavior can be robustly predicted from lPFC activity. In addition, we show that 8Av/45 encodes the color of a visual stimulus, regardless of its behavioral relevance. Most notably, whether a color matches the searched-for color can be decoded independent of a trial’s motor outcome and while subjects detect unique feature conjunctions of color and motion. Thus, macaque area 8Av/45 computes, among other task-relevant information, the behavioral relevance of visual color features. Such a signal is most critical for both the selection of responses as well as the deployment of top-down modulatory signals, like feature-based attention.File | Dimensione | Formato | |
---|---|---|---|
Schwedhelm_PFC_SciRep2020.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
2.4 MB
Formato
Adobe PDF
|
2.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione