Analysis of public transportation data in large cities is a challenging problem. Managing data ingestion, data storage, data quality enhancement, modelling and analysis requires intensive computing and a non-trivial amount of resources. In EUBra-BIGSEA (Europe–Brazil Collaboration of Big Data Scientific Research Through Cloud-Centric Applications) we address such problems in a comprehensive and integrated way. EUBra-BIGSEA provides a platform for building up data analytic workflows on top of elastic cloud services without requiring skills related to either programming or cloud services. The approach combines cloud orchestration, Quality of Service and automatic parallelisation on a platform that includes a toolbox for implementing privacy guarantees and data quality enhancement as well as advanced services for sentiment analysis, traffic jam estimation and trip recommendation based on estimated crowdedness. All developments are available under Open Source licenses (http://github.org/eubr-bigsea, https://hub.docker.com/u/eubrabigsea/).

BIGSEA: A Big Data analytics platform for public transportation information / Alic, A. S.; Almeida, J.; Aloisio, G.; Andrade, N.; Antunes, N.; Ardagna, D.; Badia, R. M.; Basso, T.; Blanquer, I.; Braz, T.; Brito, A.; Elia, D.; Fiore, S.; Guedes, D.; Lattuada, M.; Lezzi, D.; Maciel, M.; Meira, W.; Mestre, D.; Moraes, R.; Morais, F.; Pires, C. E.; Kozievitch, N. P.; Santos, W. D.; Silva, P.; Vieira, M.. - In: FUTURE GENERATION COMPUTER SYSTEMS. - ISSN 0167-739X. - 96:(2019), pp. 243-269. [10.1016/j.future.2019.02.011]

BIGSEA: A Big Data analytics platform for public transportation information

Fiore S.;
2019-01-01

Abstract

Analysis of public transportation data in large cities is a challenging problem. Managing data ingestion, data storage, data quality enhancement, modelling and analysis requires intensive computing and a non-trivial amount of resources. In EUBra-BIGSEA (Europe–Brazil Collaboration of Big Data Scientific Research Through Cloud-Centric Applications) we address such problems in a comprehensive and integrated way. EUBra-BIGSEA provides a platform for building up data analytic workflows on top of elastic cloud services without requiring skills related to either programming or cloud services. The approach combines cloud orchestration, Quality of Service and automatic parallelisation on a platform that includes a toolbox for implementing privacy guarantees and data quality enhancement as well as advanced services for sentiment analysis, traffic jam estimation and trip recommendation based on estimated crowdedness. All developments are available under Open Source licenses (http://github.org/eubr-bigsea, https://hub.docker.com/u/eubrabigsea/).
2019
Alic, A. S.; Almeida, J.; Aloisio, G.; Andrade, N.; Antunes, N.; Ardagna, D.; Badia, R. M.; Basso, T.; Blanquer, I.; Braz, T.; Brito, A.; Elia, D.; Fi...espandi
BIGSEA: A Big Data analytics platform for public transportation information / Alic, A. S.; Almeida, J.; Aloisio, G.; Andrade, N.; Antunes, N.; Ardagna, D.; Badia, R. M.; Basso, T.; Blanquer, I.; Braz, T.; Brito, A.; Elia, D.; Fiore, S.; Guedes, D.; Lattuada, M.; Lezzi, D.; Maciel, M.; Meira, W.; Mestre, D.; Moraes, R.; Morais, F.; Pires, C. E.; Kozievitch, N. P.; Santos, W. D.; Silva, P.; Vieira, M.. - In: FUTURE GENERATION COMPUTER SYSTEMS. - ISSN 0167-739X. - 96:(2019), pp. 243-269. [10.1016/j.future.2019.02.011]
File in questo prodotto:
File Dimensione Formato  
Pub3.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 6.42 MB
Formato Adobe PDF
6.42 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/280237
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 20
  • OpenAlex ND
social impact