We provide a geometric characterization of the minimal and maximal minimizer of the prescribed curvature functional P(E) - kappa |E| among subsets of a Jordan domain Omega with no necks of radius kappa (-1), for values of kappa greater than or equal to the Cheeger constant of Omega. As an application, we describe all minimizers of the isoperimetric profile for volumes greater than the volume of the minimal Cheeger set, relative to a Jordan domain Omega which has no necks of radius r, for all r. Finally, we show that for such sets and volumes the isoperimetric profile is convex.
Minimizers of the prescribed curvature functional in a Jordan domain with no necks / Leonardi, Gp; Saracco, G. - In: ESAIM. COCV. - ISSN 1292-8119. - 26:(2020), pp. 7601-7620. [10.1051/cocv/2020030]
Minimizers of the prescribed curvature functional in a Jordan domain with no necks
Leonardi, GP;Saracco, G
2020-01-01
Abstract
We provide a geometric characterization of the minimal and maximal minimizer of the prescribed curvature functional P(E) - kappa |E| among subsets of a Jordan domain Omega with no necks of radius kappa (-1), for values of kappa greater than or equal to the Cheeger constant of Omega. As an application, we describe all minimizers of the isoperimetric profile for volumes greater than the volume of the minimal Cheeger set, relative to a Jordan domain Omega which has no necks of radius r, for all r. Finally, we show that for such sets and volumes the isoperimetric profile is convex.File | Dimensione | Formato | |
---|---|---|---|
2020 - Minimizers of the prescribed curvature functional in a Jordan domain with no necks - Leonardi, Saracco.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
569.88 kB
Formato
Adobe PDF
|
569.88 kB | Adobe PDF | Visualizza/Apri |
1912.09462.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
519.1 kB
Formato
Adobe PDF
|
519.1 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione