Amphibians exhibit various, characteristic adaptations related to their "incomplete" shift from the aquatic to the terrestrial habitat. In particular, the integument was subject to a number of specialized modifications during the evolution of these animals. In this review, we place special emphasis on endogenous host-defence skin peptides from the cuteanous granular glands anuran amphibians (frogs and toads). The overview on the two broad groups of neuroactive and antimicrobial peptides (AMPs) goes beyond a simple itemization in that we provide a new perspective into the evolution and function of anuran AMPs. Briefly, these cationic, amphipathic and α-helical peptides are traditionally viewed as being part of the innate immune system, protecting the moist skin against invading microorganisms through their cytolytic action. However, the complete record of anuran species investigated to date suggests that AMPs are distributed sporadically (i.e., non-universally) across Anura. Together with the intriguing observation that virtually all anurans known to produce neuropeptides in their granular glands also co-secrete cytolytic peptides, we call the traditional role for AMPs as being purely antimicrobial into question and present an alternative scenario. We hypothesize AMPs to assist neuroactive peptides in their antipredator role through their cytolytic action increasing the delivery of the latter to the endocrine and nervous system of the predator. Thus, AMPs are more accurately viewed as cytolysins and their contribution to the immune system is better regarded as an accessory benefit.

The diversity and evolution of anuran skin peptides / Koenig, Enrico.; Bininda-Emonds, Olaf R. P.; Shaw, Chris. - In: PEPTIDES. - ISSN 0196-9781. - ELETTRONICO. - 63:(2015), pp. 96-117. [10.1016/j.peptides.2014.11.003]

The diversity and evolution of anuran skin peptides

Koenig, Enrico.;
2015-01-01

Abstract

Amphibians exhibit various, characteristic adaptations related to their "incomplete" shift from the aquatic to the terrestrial habitat. In particular, the integument was subject to a number of specialized modifications during the evolution of these animals. In this review, we place special emphasis on endogenous host-defence skin peptides from the cuteanous granular glands anuran amphibians (frogs and toads). The overview on the two broad groups of neuroactive and antimicrobial peptides (AMPs) goes beyond a simple itemization in that we provide a new perspective into the evolution and function of anuran AMPs. Briefly, these cationic, amphipathic and α-helical peptides are traditionally viewed as being part of the innate immune system, protecting the moist skin against invading microorganisms through their cytolytic action. However, the complete record of anuran species investigated to date suggests that AMPs are distributed sporadically (i.e., non-universally) across Anura. Together with the intriguing observation that virtually all anurans known to produce neuropeptides in their granular glands also co-secrete cytolytic peptides, we call the traditional role for AMPs as being purely antimicrobial into question and present an alternative scenario. We hypothesize AMPs to assist neuroactive peptides in their antipredator role through their cytolytic action increasing the delivery of the latter to the endocrine and nervous system of the predator. Thus, AMPs are more accurately viewed as cytolysins and their contribution to the immune system is better regarded as an accessory benefit.
2015
Koenig, Enrico.; Bininda-Emonds, Olaf R. P.; Shaw, Chris
The diversity and evolution of anuran skin peptides / Koenig, Enrico.; Bininda-Emonds, Olaf R. P.; Shaw, Chris. - In: PEPTIDES. - ISSN 0196-9781. - ELETTRONICO. - 63:(2015), pp. 96-117. [10.1016/j.peptides.2014.11.003]
File in questo prodotto:
File Dimensione Formato  
Koenig_2015.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.93 MB
Formato Adobe PDF
3.93 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/277618
Citazioni
  • ???jsp.display-item.citation.pmc??? 59
  • Scopus 139
  • ???jsp.display-item.citation.isi??? 131
  • OpenAlex ND
social impact