Tight regulation of gene expression is achieved by a variety of protein complexes that selectively bind chromatin, modify it and change its transcription competency. Histone acetylases (HATs) and deacetylases (HDACs) play an important role in this process. They can generate transcriptionally active or inactive chromatin through the addition (HATs) or removal (HDACs) of acetyl groups on histones, respectively. Repo-Man is a Protein Phosphatase 1 targeting subunit that accumulates on chromosomes during mitotic exit and mediates the removal of mitotic histone H3 phosphorylations. It was shown recently that Repo-Man also regulates heterochromatin formation in interphase and that its depletion favours the switch between transcriptionally inactive and active chromatin, demonstrating that its role goes well beyond mitosis. Here, we provide the first link between a phosphatase and HDAC complexes. We show that genome-wide Repo-Man binding sites overlap with chromatin regions bound by members of the three HDAC complexes (Sin3a, NuRD and CoREST). We establish that members of the NuRD and Sin3a HDAC complexes interact with Repo-Man by mass spectrometry and that Repo-Man is in close proximity to SAP18 (Sin3a) in interphase as observed by the Proximity Ligation Assay. Altogether, these data suggest a mechanism by which Repo-Man/PP1 complex, via interactions with HDACs, could stabilise gene repression.
Network of phosphatases and HDAC complexes at repressed chromatin / de Castro, I. J.; Amin, H. A.; Vinciotti, V.; Vagnarelli, P.. - In: CELL CYCLE. - ISSN 1538-4101. - 16:21(2017), pp. 2011-2017. [10.1080/15384101.2017.1371883]
Network of phosphatases and HDAC complexes at repressed chromatin
Vinciotti V.;
2017-01-01
Abstract
Tight regulation of gene expression is achieved by a variety of protein complexes that selectively bind chromatin, modify it and change its transcription competency. Histone acetylases (HATs) and deacetylases (HDACs) play an important role in this process. They can generate transcriptionally active or inactive chromatin through the addition (HATs) or removal (HDACs) of acetyl groups on histones, respectively. Repo-Man is a Protein Phosphatase 1 targeting subunit that accumulates on chromosomes during mitotic exit and mediates the removal of mitotic histone H3 phosphorylations. It was shown recently that Repo-Man also regulates heterochromatin formation in interphase and that its depletion favours the switch between transcriptionally inactive and active chromatin, demonstrating that its role goes well beyond mitosis. Here, we provide the first link between a phosphatase and HDAC complexes. We show that genome-wide Repo-Man binding sites overlap with chromatin regions bound by members of the three HDAC complexes (Sin3a, NuRD and CoREST). We establish that members of the NuRD and Sin3a HDAC complexes interact with Repo-Man by mass spectrometry and that Repo-Man is in close proximity to SAP18 (Sin3a) in interphase as observed by the Proximity Ligation Assay. Altogether, these data suggest a mechanism by which Repo-Man/PP1 complex, via interactions with HDACs, could stabilise gene repression.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione