Discrete data are collected in many application areas and are often characterised by highly-skewed distributions. An example of this, which is considered in this paper, is the number of visits to a specialist, often taken as a measure of demand in healthcare. A discrete Weibull regression model was recently proposed for regression problems with a discrete response and it was shown to possess desirable properties. In this paper, we propose the first Bayesian implementation of this model. We consider a general parametrization, where both parameters of the discrete Weibull distribution can be conditioned on the predictors, and show theoretically how, under a uniform non-informative prior, the posterior distribution is proper with finite moments. In addition, we consider closely the case of Laplace priors for parameter shrinkage and variable selection. Parameter estimates and their credible intervals can be readily calculated from their full posterior distribution. A simulation study and the analysis of four real datasets of medical records show promises for the wide applicability of this approach to the analysis of count data. The method is implemented in the R package BDWreg.
A novel Bayesian regression model for counts with an application to health data / Haselimashhadi, H.; Vinciotti, V.; Yu, K.. - In: JOURNAL OF APPLIED STATISTICS. - ISSN 0266-4763. - 45:6(2018), pp. 1085-1105. [10.1080/02664763.2017.1342782]
A novel Bayesian regression model for counts with an application to health data
Vinciotti V.;
2018-01-01
Abstract
Discrete data are collected in many application areas and are often characterised by highly-skewed distributions. An example of this, which is considered in this paper, is the number of visits to a specialist, often taken as a measure of demand in healthcare. A discrete Weibull regression model was recently proposed for regression problems with a discrete response and it was shown to possess desirable properties. In this paper, we propose the first Bayesian implementation of this model. We consider a general parametrization, where both parameters of the discrete Weibull distribution can be conditioned on the predictors, and show theoretically how, under a uniform non-informative prior, the posterior distribution is proper with finite moments. In addition, we consider closely the case of Laplace priors for parameter shrinkage and variable selection. Parameter estimates and their credible intervals can be readily calculated from their full posterior distribution. A simulation study and the analysis of four real datasets of medical records show promises for the wide applicability of this approach to the analysis of count data. The method is implemented in the R package BDWreg.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione