We construct log resolutions of pairs on the blow-up of the projective space in an arbitrary number of general points and we discuss the semi-ampleness of the strict transforms. As an application we give an explicit proof that the abundance conjecture holds for an infinite family of such pairs. For n+2 points in P n , these strict transforms are F-nef divisors on the moduli space M‾ 0,n+3 in a Kapranov's model: we show that all of them are nef. © 2019 Elsevier Inc. All rights reserved.

Positivity of divisors on blown-up projective spaces, II / Dumitrescu, O.; Postinghel, E.. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 529:(2019), pp. 226-267. [10.1016/j.jalgebra.2019.02.041]

Positivity of divisors on blown-up projective spaces, II

Postinghel E.
2019-01-01

Abstract

We construct log resolutions of pairs on the blow-up of the projective space in an arbitrary number of general points and we discuss the semi-ampleness of the strict transforms. As an application we give an explicit proof that the abundance conjecture holds for an infinite family of such pairs. For n+2 points in P n , these strict transforms are F-nef divisors on the moduli space M‾ 0,n+3 in a Kapranov's model: we show that all of them are nef. © 2019 Elsevier Inc. All rights reserved.
2019
Dumitrescu, O.; Postinghel, E.
Positivity of divisors on blown-up projective spaces, II / Dumitrescu, O.; Postinghel, E.. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - 529:(2019), pp. 226-267. [10.1016/j.jalgebra.2019.02.041]
File in questo prodotto:
File Dimensione Formato  
Positivity_II_16_revised .pdf

Open Access dal 02/07/2021

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 568.35 kB
Formato Adobe PDF
568.35 kB Adobe PDF Visualizza/Apri
1-s2.0-S0021869319301589-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 692.08 kB
Formato Adobe PDF
692.08 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/274815
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact