We study some properties and perspectives of the Hurwitz series ring HR[[t]], for an integral domain R, with multiplicative identity and zero characteristic. Specifically, we provide a closed form for the invertible elements by means of the complete ordinary Bell polynomials, we highlight some connections with well–known transforms of sequences, and we see that the Stirling transforms are automorphisms of HR[[t]]. Moreover, we focus the attention on some special subgroups studying their properties. Finally, we introduce a new transform of sequences that allows to see one of this subgroup as an ultrametric dynamic space.

Some combinatorial properties of the Hurwitz series ring / Barbero, Stefano; Cerruti, Umberto; Murru, Nadir. - In: RICERCHE DI MATEMATICA. - ISSN 1827-3491. - 67:(2018), pp. 491-507. [10.1007/s11587-017-0336-x]

Some combinatorial properties of the Hurwitz series ring

Barbero, Stefano;Murru, Nadir
2018-01-01

Abstract

We study some properties and perspectives of the Hurwitz series ring HR[[t]], for an integral domain R, with multiplicative identity and zero characteristic. Specifically, we provide a closed form for the invertible elements by means of the complete ordinary Bell polynomials, we highlight some connections with well–known transforms of sequences, and we see that the Stirling transforms are automorphisms of HR[[t]]. Moreover, we focus the attention on some special subgroups studying their properties. Finally, we introduce a new transform of sequences that allows to see one of this subgroup as an ultrametric dynamic space.
2018
Barbero, Stefano; Cerruti, Umberto; Murru, Nadir
Some combinatorial properties of the Hurwitz series ring / Barbero, Stefano; Cerruti, Umberto; Murru, Nadir. - In: RICERCHE DI MATEMATICA. - ISSN 1827-3491. - 67:(2018), pp. 491-507. [10.1007/s11587-017-0336-x]
File in questo prodotto:
File Dimensione Formato  
hurwitz.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 323.06 kB
Formato Adobe PDF
323.06 kB Adobe PDF Visualizza/Apri
Barbero2018_Article_SomeCombinatorialPropertiesOfT.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 430 kB
Formato Adobe PDF
430 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/272187
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact