We prove an Almansi Theorem for quaternionic polynomials %of the form $P(x)=sum_{k=0}^d x^ka_k$ and extend it to quaternionic slice-regular functions. We associate to every such function $f$, a pair $h_1$, $h_2$ of zonal harmonic functions such that $f=h_1-ar x h_2$. We apply this result to get mean value formulas and Poisson formulas for slice-regular quaternionic functions.
Almansi Theorem and Mean Value Formula for Quaternionic Slice-regular Functions / Perotti, Alessandro. - In: ADVANCES IN APPLIED CLIFFORD ALGEBRAS. - ISSN 0188-7009. - 30:4(2020), pp. 6101-6111. [10.1007/s00006-020-01078-4]
Almansi Theorem and Mean Value Formula for Quaternionic Slice-regular Functions
Alessandro Perotti
2020-01-01
Abstract
We prove an Almansi Theorem for quaternionic polynomials %of the form $P(x)=sum_{k=0}^d x^ka_k$ and extend it to quaternionic slice-regular functions. We associate to every such function $f$, a pair $h_1$, $h_2$ of zonal harmonic functions such that $f=h_1-ar x h_2$. We apply this result to get mean value formulas and Poisson formulas for slice-regular quaternionic functions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
AACA_Aveiro_2019_R1.pdf
Solo gestori archivio
Descrizione: Versione finale R1
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
266.61 kB
Formato
Adobe PDF
|
266.61 kB | Adobe PDF | Visualizza/Apri |
AACA_AlmansiTheoremAndMeanValueForm.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
359.98 kB
Formato
Adobe PDF
|
359.98 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione