In this note we introduce a new model for the mailing problem in branched transportation that takes into account the orientation of the moving particles. This gives an effective answer to Bernot et al. (2009, Problem 15.9). Moreover we define a convex relaxation in terms of rectifiable currents with group coefficients. We provide the problem with a notion of calibration. Using similar techniques we define a convex relaxation and a corresponding notion of calibration for a variant of the Steiner tree problem in which a connectedness constraint is assigned only among a certain partition of a given set of finitely many points.

The oriented mailing problem and its convex relaxation / Carioni, Marcello; Marchese, Andrea; Massaccesi, Annalisa; Pluda, Alessandra; Tione, Riccardo. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 2020/199:(2020), pp. 11203501-11203512. [10.1016/j.na.2020.112035]

The oriented mailing problem and its convex relaxation

Andrea Marchese;Annalisa Massaccesi;
2020-01-01

Abstract

In this note we introduce a new model for the mailing problem in branched transportation that takes into account the orientation of the moving particles. This gives an effective answer to Bernot et al. (2009, Problem 15.9). Moreover we define a convex relaxation in terms of rectifiable currents with group coefficients. We provide the problem with a notion of calibration. Using similar techniques we define a convex relaxation and a corresponding notion of calibration for a variant of the Steiner tree problem in which a connectedness constraint is assigned only among a certain partition of a given set of finitely many points.
2020
Carioni, Marcello; Marchese, Andrea; Massaccesi, Annalisa; Pluda, Alessandra; Tione, Riccardo
The oriented mailing problem and its convex relaxation / Carioni, Marcello; Marchese, Andrea; Massaccesi, Annalisa; Pluda, Alessandra; Tione, Riccardo. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 2020/199:(2020), pp. 11203501-11203512. [10.1016/j.na.2020.112035]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0362546X2030239X-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 777.11 kB
Formato Adobe PDF
777.11 kB Adobe PDF   Visualizza/Apri
1904.08246.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 241.73 kB
Formato Adobe PDF
241.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/270615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact