We consider a boundary value problem driven by the p-fractional Laplacian with nonlocal Robin boundary conditions and we provide necessary and sufficient conditions which ensure the existence of a unique positive (weak) solution. The results proved in this paper can be considered a first step towards a complete generalization of the classical result by Brezis and Oswald (Nonlinear Anal 10:55–64, 1986) to the nonlocal setting.

Towards a Brezis–Oswald-type result for fractional problems with Robin boundary conditions / Pinamonti, Andrea; Vecchi, Eugenio; Mugnai, Dimitri. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1432-0835. - 2020/59:2(2020), pp. 4301-4325. [10.1007/s00526-020-1708-8]

Towards a Brezis–Oswald-type result for fractional problems with Robin boundary conditions

Andrea Pinamonti;
2020-01-01

Abstract

We consider a boundary value problem driven by the p-fractional Laplacian with nonlocal Robin boundary conditions and we provide necessary and sufficient conditions which ensure the existence of a unique positive (weak) solution. The results proved in this paper can be considered a first step towards a complete generalization of the classical result by Brezis and Oswald (Nonlinear Anal 10:55–64, 1986) to the nonlocal setting.
2020
2
Pinamonti, Andrea; Vecchi, Eugenio; Mugnai, Dimitri
Towards a Brezis–Oswald-type result for fractional problems with Robin boundary conditions / Pinamonti, Andrea; Vecchi, Eugenio; Mugnai, Dimitri. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1432-0835. - 2020/59:2(2020), pp. 4301-4325. [10.1007/s00526-020-1708-8]
File in questo prodotto:
File Dimensione Formato  
MPV_revised.pdf

Solo gestori archivio

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 381.11 kB
Formato Adobe PDF
381.11 kB Adobe PDF   Visualizza/Apri
Mugnai2020_Article_TowardsABrezisOswald-typeResul.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 391.23 kB
Formato Adobe PDF
391.23 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/266890
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact