In this article we prove that the singular set of Dirichlet-minimizing Q-valued functions is countably .m2/-rectifiable and we give upper bounds for the .m2/-dimensional Minkowski content of the set of singular points with multiplicity Q.
Rectifiability and upper Minkowski bounds for singularities of harmonic Q-valued maps / De Lellis, C.; Marchese, A.; Spadaro, E.; Valtorta, D.. - In: COMMENTARII MATHEMATICI HELVETICI. - ISSN 0010-2571. - 93:4(2018), pp. 737-779. [10.4171/CMH/449]
Rectifiability and upper Minkowski bounds for singularities of harmonic Q-valued maps
Marchese A.;Spadaro E.;Valtorta D.
2018-01-01
Abstract
In this article we prove that the singular set of Dirichlet-minimizing Q-valued functions is countably .m2/-rectifiable and we give upper bounds for the .m2/-dimensional Minkowski content of the set of singular points with multiplicity Q.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Q-rect-47.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
423.93 kB
Formato
Adobe PDF
|
423.93 kB | Adobe PDF | Visualizza/Apri |
comment.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
403.17 kB
Formato
Adobe PDF
|
403.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione