In this article we prove that the singular set of Dirichlet-minimizing Q-valued functions is countably .m2/-rectifiable and we give upper bounds for the .m2/-dimensional Minkowski content of the set of singular points with multiplicity Q.

Rectifiability and upper Minkowski bounds for singularities of harmonic Q-valued maps / De Lellis, C.; Marchese, A.; Spadaro, E.; Valtorta, D.. - In: COMMENTARII MATHEMATICI HELVETICI. - ISSN 0010-2571. - 93:4(2018), pp. 737-779. [10.4171/CMH/449]

Rectifiability and upper Minkowski bounds for singularities of harmonic Q-valued maps

Marchese A.;Spadaro E.;Valtorta D.
2018-01-01

Abstract

In this article we prove that the singular set of Dirichlet-minimizing Q-valued functions is countably .m2/-rectifiable and we give upper bounds for the .m2/-dimensional Minkowski content of the set of singular points with multiplicity Q.
2018
4
De Lellis, C.; Marchese, A.; Spadaro, E.; Valtorta, D.
Rectifiability and upper Minkowski bounds for singularities of harmonic Q-valued maps / De Lellis, C.; Marchese, A.; Spadaro, E.; Valtorta, D.. - In: COMMENTARII MATHEMATICI HELVETICI. - ISSN 0010-2571. - 93:4(2018), pp. 737-779. [10.4171/CMH/449]
File in questo prodotto:
File Dimensione Formato  
Q-rect-47.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 423.93 kB
Formato Adobe PDF
423.93 kB Adobe PDF Visualizza/Apri
comment.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 403.17 kB
Formato Adobe PDF
403.17 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/265935
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
  • OpenAlex ND
social impact