In this note we prove an explicit formula for the lower semicontinuous envelope of some functionals defined on real polyhedral chains. More precisely, denoting by H:R→[0,∞) an even, subadditive, and lower semicontinuous function with H(0)=0, and by ΦH the functional induced by H on polyhedral m-chains, namely ΦH(P)≔∑i=1NH(θi)Hm(σi),for every P=∑i=1Nθi〚σi〛∈Pm(Rn),we prove that the lower semicontinuous envelope of ΦH coincides on rectifiable m-currents with the H-mass MH(R)≔∫EH(θ(x))dHm(x) for every R=〚E,τ,θ〛∈Rm(Rn).

On the lower semicontinuous envelope of functionals defined on polyhedral chains / Colombo, M.; De Rosa, A.; Marchese, A.; Stuvard, S.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 163:(2017), pp. 201-215. [10.1016/j.na.2017.08.002]

On the lower semicontinuous envelope of functionals defined on polyhedral chains

Marchese A.;
2017-01-01

Abstract

In this note we prove an explicit formula for the lower semicontinuous envelope of some functionals defined on real polyhedral chains. More precisely, denoting by H:R→[0,∞) an even, subadditive, and lower semicontinuous function with H(0)=0, and by ΦH the functional induced by H on polyhedral m-chains, namely ΦH(P)≔∑i=1NH(θi)Hm(σi),for every P=∑i=1Nθi〚σi〛∈Pm(Rn),we prove that the lower semicontinuous envelope of ΦH coincides on rectifiable m-currents with the H-mass MH(R)≔∫EH(θ(x))dHm(x) for every R=〚E,τ,θ〛∈Rm(Rn).
2017
Colombo, M.; De Rosa, A.; Marchese, A.; Stuvard, S.
On the lower semicontinuous envelope of functionals defined on polyhedral chains / Colombo, M.; De Rosa, A.; Marchese, A.; Stuvard, S.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 163:(2017), pp. 201-215. [10.1016/j.na.2017.08.002]
File in questo prodotto:
File Dimensione Formato  
CDRMS_POST_REPORT.pdf

Open Access dal 01/12/2019

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 391.95 kB
Formato Adobe PDF
391.95 kB Adobe PDF Visualizza/Apri
1-s2.0-S0362546X1730202X-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 853.11 kB
Formato Adobe PDF
853.11 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/265901
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
  • OpenAlex ND
social impact