This research investigates the influence of graphite's granulometry on the dry sliding behavior of a copper-free friction material against pearlitic cast iron. Samples were designed and fabricated using three different types of commercial natural graphite. A sample without graphite was also considered as a reference. Tests were carried out with a pin-on-disc tribometer at room temperature (RT), at 400 °C, and at RT after the high temperature tests. The results show that both the shape and size of the graphite particles influence the coefficient of friction and the specific wear rate. The friction material featuring a lower particle size and equiaxed grains of natural graphite exhibits a better behavior, as compared to coarser graphite with plate-like grains. The results were obtained comparing specific characteristics (i.e., morphology and chemical composition) of the friction layers formed on each friction material under the different testing conditions.
A pin-on-disc study on the dry sliding behavior of a Cu-free friction material containing different types of natural graphite / Leonardi, M.; Alemani, M.; Straffelini, G.; Gialanella, S.. - In: WEAR. - ISSN 0043-1648. - STAMPA. - 442-443:(2020), p. 203157. [10.1016/j.wear.2019.203157]
A pin-on-disc study on the dry sliding behavior of a Cu-free friction material containing different types of natural graphite
Straffelini G.;Gialanella S.
2020-01-01
Abstract
This research investigates the influence of graphite's granulometry on the dry sliding behavior of a copper-free friction material against pearlitic cast iron. Samples were designed and fabricated using three different types of commercial natural graphite. A sample without graphite was also considered as a reference. Tests were carried out with a pin-on-disc tribometer at room temperature (RT), at 400 °C, and at RT after the high temperature tests. The results show that both the shape and size of the graphite particles influence the coefficient of friction and the specific wear rate. The friction material featuring a lower particle size and equiaxed grains of natural graphite exhibits a better behavior, as compared to coarser graphite with plate-like grains. The results were obtained comparing specific characteristics (i.e., morphology and chemical composition) of the friction layers formed on each friction material under the different testing conditions.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0043164819313389-main.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.62 MB
Formato
Adobe PDF
|
3.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione