The dynamical properties of an extended Hubbard model, which is relevant to quarter-filled layered organic molecular crystals, are analyzed. We have computed the dynamical charge correlation function, spectral density, and optical conductivity using Lanczos diagonalization and large-N techniques. As the ratio of the nearest-neighbor Coulomb repulsion, V, to the hopping integral, t, increases there is a transition from a metallic phase to a charge-ordered phase. Dynamical properties close to the ordering transition are found to differ from the ones expected in a conventional metal. Large-N calculations display an enhancement of spectral weight at low frequencies as the system is driven closer to the charge-ordering transition in agreement with Lanczos calculations. As V is increased the charge correlation function displays a collective mode which, for wave vectors close to (π, π), increases in amplitude and softens as the charge-ordering transition is approached. We propose that inelastic x-ray scattering be used to detect this mode. Large-N calculations predict superconductivity with dxy symmetry close to the ordering transition. We find that this is consistent with Lanczos diagonalization calculations, on lattices of 20 sites, which find that the binding energy of two holes becomes negative close to the charge-ordering transition. © 2003 The American Physical Society.
Dynamical properties of a strongly correlated model for quarter-filled layered organic molecular crystals / Merino, J.; Greco, A.; Mckenzie, R. H.; Calandra, M.. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 68:24(2003). [10.1103/PhysRevB.68.245121]
Dynamical properties of a strongly correlated model for quarter-filled layered organic molecular crystals
Calandra M.
2003-01-01
Abstract
The dynamical properties of an extended Hubbard model, which is relevant to quarter-filled layered organic molecular crystals, are analyzed. We have computed the dynamical charge correlation function, spectral density, and optical conductivity using Lanczos diagonalization and large-N techniques. As the ratio of the nearest-neighbor Coulomb repulsion, V, to the hopping integral, t, increases there is a transition from a metallic phase to a charge-ordered phase. Dynamical properties close to the ordering transition are found to differ from the ones expected in a conventional metal. Large-N calculations display an enhancement of spectral weight at low frequencies as the system is driven closer to the charge-ordering transition in agreement with Lanczos calculations. As V is increased the charge correlation function displays a collective mode which, for wave vectors close to (π, π), increases in amplitude and softens as the charge-ordering transition is approached. We propose that inelastic x-ray scattering be used to detect this mode. Large-N calculations predict superconductivity with dxy symmetry close to the ordering transition. We find that this is consistent with Lanczos diagonalization calculations, on lattices of 20 sites, which find that the binding energy of two holes becomes negative close to the charge-ordering transition. © 2003 The American Physical Society.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione