Spaceborne radar sounders are an important class of remote sensing instruments which operate by recording backscattered electromagnetic waves in the vicinity of a solid planetary body. The incoming waves are generally transmitted by the radar itself (active sounding), although external signals of opportunity can also be used (passive sounding). There are currently two major planetary radar sounders under development, both headed to the Jovian icy moons (Europa, Ganymede and Callisto). Designing a radar sounder is a very challenging process involving careful leveraging of heritage and predictive tools, and in which backscattering simulators play a central role. This is especially true for coherent simulators, due to their higher accuracy and the possibility they offer to apply advanced processing techniques on the resulting simulated data, such as synthetic aperture radar focusing, or any other operation which requires field amplitude, phase and polarisation. For this reason, designing computationally-efficient coherent simulators is an important and active research area. The first contribution of this thesis is a novel multilayer coherent simulator based on the Stratton-Chu equation and the linear phase approximation, which can generate realistic simulated radar data on a wide range of surface and subsurface digital elevation models (DEM), using only a fraction of the computational resources that a finite-difference time-domain method would need. Thorough validation was conducted against both theoretical formulations and real data, which confirmed the accuracy of the method. The method was then generalised to noisy active and passive sounding, which is an important capability in the context of the proposed use of passive sounding on the Jovian icy moons. Provided that representative information about the surface and this external field exists, the simulator could compare the relative scientific value of active and passive sounding of a given target under given conditions. However, quality DEMs of the Jovian icy moons are scarce. For this reason we also present a comparative study of the fractal roughness of Europa and Mars (a much better studied body), where we derive fractal analogue maps of twelve types of Europan terrains on Mars. These maps could be used to guide the choice of Martian DEMs on which to perform representative backscattering simulations for future radar missions on Europa. Finally, we explore the possibility of entirely new radar architectures with the novel concept of the distributed radar. In a distributed sounder, very large across-track antennas can be synthesised from smallsats flying on selected orbits, providing a way to obtain a highly-directive antenna without the need to deploy large and complex structures in space. We develop an analytical formulation to treat the problem of beamforming with an array affected by perturbations on the positions of its array elements, and propose a set of Keplerian parameters that enable the concept.

Advanced Backscattering Simulation Methods for the Design of Spaceborne Radar Sounders / Gerekos, Christopher. - (2020 Apr 23), pp. 1-174. [10.15168/11572_261416]

Advanced Backscattering Simulation Methods for the Design of Spaceborne Radar Sounders

Gerekos, Christopher
2020-04-23

Abstract

Spaceborne radar sounders are an important class of remote sensing instruments which operate by recording backscattered electromagnetic waves in the vicinity of a solid planetary body. The incoming waves are generally transmitted by the radar itself (active sounding), although external signals of opportunity can also be used (passive sounding). There are currently two major planetary radar sounders under development, both headed to the Jovian icy moons (Europa, Ganymede and Callisto). Designing a radar sounder is a very challenging process involving careful leveraging of heritage and predictive tools, and in which backscattering simulators play a central role. This is especially true for coherent simulators, due to their higher accuracy and the possibility they offer to apply advanced processing techniques on the resulting simulated data, such as synthetic aperture radar focusing, or any other operation which requires field amplitude, phase and polarisation. For this reason, designing computationally-efficient coherent simulators is an important and active research area. The first contribution of this thesis is a novel multilayer coherent simulator based on the Stratton-Chu equation and the linear phase approximation, which can generate realistic simulated radar data on a wide range of surface and subsurface digital elevation models (DEM), using only a fraction of the computational resources that a finite-difference time-domain method would need. Thorough validation was conducted against both theoretical formulations and real data, which confirmed the accuracy of the method. The method was then generalised to noisy active and passive sounding, which is an important capability in the context of the proposed use of passive sounding on the Jovian icy moons. Provided that representative information about the surface and this external field exists, the simulator could compare the relative scientific value of active and passive sounding of a given target under given conditions. However, quality DEMs of the Jovian icy moons are scarce. For this reason we also present a comparative study of the fractal roughness of Europa and Mars (a much better studied body), where we derive fractal analogue maps of twelve types of Europan terrains on Mars. These maps could be used to guide the choice of Martian DEMs on which to perform representative backscattering simulations for future radar missions on Europa. Finally, we explore the possibility of entirely new radar architectures with the novel concept of the distributed radar. In a distributed sounder, very large across-track antennas can be synthesised from smallsats flying on selected orbits, providing a way to obtain a highly-directive antenna without the need to deploy large and complex structures in space. We develop an analytical formulation to treat the problem of beamforming with an array affected by perturbations on the positions of its array elements, and propose a set of Keplerian parameters that enable the concept.
XXXII
2018-2019
Ingegneria e scienza dell'Informaz (29/10/12-)
Information and Communication Technology
Bruzzone, Lorenzo
no
Inglese
File in questo prodotto:
File Dimensione Formato  
Christopher Gerekos - PhD thesis_ultracompressed.pdf

embargo fino al 12/02/2021

Descrizione: full thesis (compressed)
Tipologia: Tesi di dottorato (Doctoral Thesis)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 9.41 MB
Formato Adobe PDF
9.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/261416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact