We present an Almansi-type decomposition for polynomials with Clifford coefficients, and more generally for slice-regular functions on Clifford algebras. The classical result by Emilio Almansi, published in 1899, dealt with poly-harmonic functions, the elements of the kernel of an iterated Laplacian. Here we consider polynomials of the form $P(x)=sum_{k=0}^d x^ka_k$, with Clifford coefficients $a_kinmathbb R_{n}$, and get an analogous decomposition related to zonal polyharmonics. We show the relation between such decomposition and the Dirac (or Cauchy-Riemann) operator and extend the results to slice-regular functions.
Almansi-type theorems for slice-regular functions on Clifford algebras / Perotti, Alessandro. - In: COMPLEX VARIABLES AND ELLIPTIC EQUATIONS. - ISSN 1747-6933. - 2021, 66:8(2021), pp. 1287-1297. [10.1080/17476933.2020.1755967]
Almansi-type theorems for slice-regular functions on Clifford algebras
Perotti, Alessandro
2021-01-01
Abstract
We present an Almansi-type decomposition for polynomials with Clifford coefficients, and more generally for slice-regular functions on Clifford algebras. The classical result by Emilio Almansi, published in 1899, dealt with poly-harmonic functions, the elements of the kernel of an iterated Laplacian. Here we consider polynomials of the form $P(x)=sum_{k=0}^d x^ka_k$, with Clifford coefficients $a_kinmathbb R_{n}$, and get an analogous decomposition related to zonal polyharmonics. We show the relation between such decomposition and the Dirac (or Cauchy-Riemann) operator and extend the results to slice-regular functions.File | Dimensione | Formato | |
---|---|---|---|
AlmansiClifford_arxiv.pdf
accesso aperto
Descrizione: arXiv
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
289.2 kB
Formato
Adobe PDF
|
289.2 kB | Adobe PDF | Visualizza/Apri |
Almansi type theorems for slice regular functions on Clifford algebras.pdf
Solo gestori archivio
Descrizione: online first
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione