A Feynman path integral formula for the Schrödinger equation with magnetic field is rigorously mathematically realized in terms of infinite dimensional oscillatory integrals. We show (by the example of a linear vector potential) that the requirement of the independence of the integral on the approximation procedure forces the introduction of a counterterm to be added to the classical action functional. This provides a natural explanation for the appearance of a Stratonovich integral in the path integral formula for both the Schrödinger and heat equation with magnetic field.

A Rigorous Mathematical Construction of Feynman Path Integrals for the Schrödinger Equation with Magnetic Field / Albeverio, S.; Cangiotti, N.; Mazzucchi, S.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 377:2(2020), pp. 1461-1503. [10.1007/s00220-020-03744-x]

A Rigorous Mathematical Construction of Feynman Path Integrals for the Schrödinger Equation with Magnetic Field

Albeverio, S.;Cangiotti, N.;Mazzucchi, S.
2020-01-01

Abstract

A Feynman path integral formula for the Schrödinger equation with magnetic field is rigorously mathematically realized in terms of infinite dimensional oscillatory integrals. We show (by the example of a linear vector potential) that the requirement of the independence of the integral on the approximation procedure forces the introduction of a counterterm to be added to the classical action functional. This provides a natural explanation for the appearance of a Stratonovich integral in the path integral formula for both the Schrödinger and heat equation with magnetic field.
2020
2
Albeverio, S.; Cangiotti, N.; Mazzucchi, S.
A Rigorous Mathematical Construction of Feynman Path Integrals for the Schrödinger Equation with Magnetic Field / Albeverio, S.; Cangiotti, N.; Mazzucchi, S.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 377:2(2020), pp. 1461-1503. [10.1007/s00220-020-03744-x]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/256707
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact