Cortical excitability modulation and neuroplasticity are considered essential mechanisms for improving clinical and cognitive abilities in neurodegenerative disorders (NDDs). In such context, transcranial direct current stimulation (tDCS) shows great promise for facilitating remodeling of neurosynaptic organization. The aim of this review was to provide an overview of how tDCS is currently used as a neurorehabilitation strategy in some NDDs. We describe results from studies in which tDCS was applied in mild cognitive impairment, Alzheimer's disease, and primary progressive aphasia. Currently, findings related to the ability of tDCS to restore cognitive dysfunctions and behavioral impairments in these NDDs do not seem to support the notion that tDCS shows clear therapeutic efficacy in patients with mild cognitive impairment, Alzheimer disease, and primary progressive aphasia. This is probably because tDCS research in this area is still in its early stages. Methodological concerns, such as differences in tDCS parameters (eg, intensity or duration), target sites, and study design (eg, the relationship between tDCS and the rehabilitation strategy), or the use of underpowered sample sizes may also contribute to these outcomes. Nevertheless, it is important to note that almost no studies have evaluated how the underlying neurophysiological state of patients should guide the application of tDCS. These results should not prevent the use of tDCS in these NDDs, but they should trigger a deeper evaluation of how tDCS should be used. Transcranial direct current stimulation cannot be considered a neurorehabilitation apparatus by itself but should be instead viewed as a method for weakly modulating existing brain excitability. Future studies should aim to improve our understanding of the neurophysiological mechanisms that underlie the clinical effects of tDCS with the final goal of designing and performing individualized stimulation protocols that can be tailored for each NDD patient and combined with other appropriate neurorehabilitation strategies.
Transcranial direct current stimulation in neurodegenerative disorders / Pellicciari, M. C.; Miniussi, C.. - In: THE JOURNAL OF ECT. - ISSN 1095-0680. - ELETTRONICO. - 34:3(2018), pp. 193-202. [10.1097/YCT.0000000000000539]
Transcranial direct current stimulation in neurodegenerative disorders
Miniussi C.
2018-01-01
Abstract
Cortical excitability modulation and neuroplasticity are considered essential mechanisms for improving clinical and cognitive abilities in neurodegenerative disorders (NDDs). In such context, transcranial direct current stimulation (tDCS) shows great promise for facilitating remodeling of neurosynaptic organization. The aim of this review was to provide an overview of how tDCS is currently used as a neurorehabilitation strategy in some NDDs. We describe results from studies in which tDCS was applied in mild cognitive impairment, Alzheimer's disease, and primary progressive aphasia. Currently, findings related to the ability of tDCS to restore cognitive dysfunctions and behavioral impairments in these NDDs do not seem to support the notion that tDCS shows clear therapeutic efficacy in patients with mild cognitive impairment, Alzheimer disease, and primary progressive aphasia. This is probably because tDCS research in this area is still in its early stages. Methodological concerns, such as differences in tDCS parameters (eg, intensity or duration), target sites, and study design (eg, the relationship between tDCS and the rehabilitation strategy), or the use of underpowered sample sizes may also contribute to these outcomes. Nevertheless, it is important to note that almost no studies have evaluated how the underlying neurophysiological state of patients should guide the application of tDCS. These results should not prevent the use of tDCS in these NDDs, but they should trigger a deeper evaluation of how tDCS should be used. Transcranial direct current stimulation cannot be considered a neurorehabilitation apparatus by itself but should be instead viewed as a method for weakly modulating existing brain excitability. Future studies should aim to improve our understanding of the neurophysiological mechanisms that underlie the clinical effects of tDCS with the final goal of designing and performing individualized stimulation protocols that can be tailored for each NDD patient and combined with other appropriate neurorehabilitation strategies.File | Dimensione | Formato | |
---|---|---|---|
JECT_Pellicciari&Miniussi_2018.pdf
Solo gestori archivio
Descrizione: Articolo
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
673.87 kB
Formato
Adobe PDF
|
673.87 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione