We study the dynamics of a two-dimensional Bose gas after an instantaneous quench of an initially ultracold thermal atomic gas across the Berezinskii-Kosterlitz-Thouless phase transition, confirming via stochastic simulations that the system undergoes phase-ordering kinetics and fulfills the dynamical scaling hypothesis at late-time dynamics. Specifically, we find in that regime the vortex number decaying in time as Nv't-1, consistent with a dynamical critical exponent z≈2 for both temperature and interaction quenches. Focusing on finite-size boxlike geometries, we demonstrate that such an observation is within current experimental reach.

Quench dynamics of an ultracold two-dimensional Bose gas / Comaron, P.; Larcher, F.; Dalfovo, F.; Proukakis, N. P.. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 100:3(2019). [10.1103/PhysRevA.100.033618]

Quench dynamics of an ultracold two-dimensional Bose gas

Larcher F.;Dalfovo F.;
2019-01-01

Abstract

We study the dynamics of a two-dimensional Bose gas after an instantaneous quench of an initially ultracold thermal atomic gas across the Berezinskii-Kosterlitz-Thouless phase transition, confirming via stochastic simulations that the system undergoes phase-ordering kinetics and fulfills the dynamical scaling hypothesis at late-time dynamics. Specifically, we find in that regime the vortex number decaying in time as Nv't-1, consistent with a dynamical critical exponent z≈2 for both temperature and interaction quenches. Focusing on finite-size boxlike geometries, we demonstrate that such an observation is within current experimental reach.
2019
3
Comaron, P.; Larcher, F.; Dalfovo, F.; Proukakis, N. P.
Quench dynamics of an ultracold two-dimensional Bose gas / Comaron, P.; Larcher, F.; Dalfovo, F.; Proukakis, N. P.. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 100:3(2019). [10.1103/PhysRevA.100.033618]
File in questo prodotto:
File Dimensione Formato  
1905.05263.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/255797
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
  • OpenAlex ND
social impact