This paper presents an approach for precision agriculture large scale applications based on the analysis of big data consisting in Satellite Image Time Series (SITS) acquired by ESA Sentinel-2 (S2) satellite constellation. The approach has been developed in the framework of the ESA SEOM - Scientific Exploitation of Operational Missions - S2-4Sci Land and Water project [1]. To focus only on agricultural areas, images are first filtered based on a land cover (LC) map that is generated by updating available old maps by means of recent images. Then S2 SITS are used to analyse agricultural areas. Two macro challenges are therefore considered: (i) automatic update of LC maps and generation of agricultural areas mask; and (ii) unsupervised multi-temporal (MT) fine characterization of land plots.

Big Data from Space for Precision Agriculture Applications / Bovolo, F.; Bruzzone, L.; Fernández-Prieto, D.; Paris, C.; Solano-Correa, Y. T.; Volden, E.; Zanetti, M.. - In: IOP CONFERENCE SERIES. EARTH AND ENVIRONMENTAL SCIENCE. - ISSN 1755-1307. - ELETTRONICO. - 509:1(2020), pp. 0120041-0120043. (Intervento presentato al convegno 11th International Symposium on Digital Earth, ISDE 2019 tenutosi a Firenze nel 24-27 September 2019) [10.1088/1755-1315/509/1/012004].

Big Data from Space for Precision Agriculture Applications

F. Bovolo;L. Bruzzone;C. Paris;M. Zanetti
2020-01-01

Abstract

This paper presents an approach for precision agriculture large scale applications based on the analysis of big data consisting in Satellite Image Time Series (SITS) acquired by ESA Sentinel-2 (S2) satellite constellation. The approach has been developed in the framework of the ESA SEOM - Scientific Exploitation of Operational Missions - S2-4Sci Land and Water project [1]. To focus only on agricultural areas, images are first filtered based on a land cover (LC) map that is generated by updating available old maps by means of recent images. Then S2 SITS are used to analyse agricultural areas. Two macro challenges are therefore considered: (i) automatic update of LC maps and generation of agricultural areas mask; and (ii) unsupervised multi-temporal (MT) fine characterization of land plots.
2020
Proceedings 11th International symposium on Digital Earth
Bristol
Institute of Physics Publishing
Big Data from Space for Precision Agriculture Applications / Bovolo, F.; Bruzzone, L.; Fernández-Prieto, D.; Paris, C.; Solano-Correa, Y. T.; Volden, E.; Zanetti, M.. - In: IOP CONFERENCE SERIES. EARTH AND ENVIRONMENTAL SCIENCE. - ISSN 1755-1307. - ELETTRONICO. - 509:1(2020), pp. 0120041-0120043. (Intervento presentato al convegno 11th International Symposium on Digital Earth, ISDE 2019 tenutosi a Firenze nel 24-27 September 2019) [10.1088/1755-1315/509/1/012004].
Bovolo, F.; Bruzzone, L.; Fernández-Prieto, D.; Paris, C.; Solano-Correa, Y. T.; Volden, E.; Zanetti, M.
File in questo prodotto:
File Dimensione Formato  
ExtendedAbstract_ISDE2019.pdf

accesso aperto

Tipologia: Abstract
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 376.35 kB
Formato Adobe PDF
376.35 kB Adobe PDF Visualizza/Apri
Bovolo_2020_IOP_Conf._Ser.__Earth_Environ._Sci._509_012004.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 526.75 kB
Formato Adobe PDF
526.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/254862
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact