The wireless sensor network (WSN) is widely employed in the application scenarios of the Internet of Things (IoT) in recent years. Extending the lifetime of the entire system had become a significant challenge due to the energy-constrained fundamental limits of sensor nodes on the perceptual layer of IoT. The clustering routing structures are currently the most popular solution, which can effectively reduce the energy consumption of the entire network and improve its reliability. This paper introduces an enhanced hybrid intelligential algorithm based on particle swarm optimization (PSO) and ant colony optimization (ACO) method. The enhanced PSO is deployed to select the optimal cluster heads for establishing the clustering architecture. An improved ACO is introduced to realize the data transmission from terminal sensor nodes to the base station. Our proposed algorithm can effectively reduce the entire energy consumption and extend the lifetime of IoT sensor networks. Compared with the traditional algorithms, the simulation results show that the presented novel algorithm in this paper has obvious optimization and improvement in network lifetime and energy utilization efficiency.

CPAC: Energy-efficient algorithm for IoT sensor networks based on enhanced hybrid intelligent swarm / Wang, Q.; Liu, Wenjing; Yu, H.; Zheng, S.; Gao, S.; Granelli, F.. - In: COMPUTER MODELING IN ENGINEERING & SCIENCES. - ISSN 1526-1492. - ELETTRONICO. - 121:1(2019), pp. 83-103. [10.32604/cmes.2019.06897]

CPAC: Energy-efficient algorithm for IoT sensor networks based on enhanced hybrid intelligent swarm

Wang Q.;Liu, Wenjing;Granelli F.
2019

Abstract

The wireless sensor network (WSN) is widely employed in the application scenarios of the Internet of Things (IoT) in recent years. Extending the lifetime of the entire system had become a significant challenge due to the energy-constrained fundamental limits of sensor nodes on the perceptual layer of IoT. The clustering routing structures are currently the most popular solution, which can effectively reduce the energy consumption of the entire network and improve its reliability. This paper introduces an enhanced hybrid intelligential algorithm based on particle swarm optimization (PSO) and ant colony optimization (ACO) method. The enhanced PSO is deployed to select the optimal cluster heads for establishing the clustering architecture. An improved ACO is introduced to realize the data transmission from terminal sensor nodes to the base station. Our proposed algorithm can effectively reduce the entire energy consumption and extend the lifetime of IoT sensor networks. Compared with the traditional algorithms, the simulation results show that the presented novel algorithm in this paper has obvious optimization and improvement in network lifetime and energy utilization efficiency.
1
Wang, Q.; Liu, Wenjing; Yu, H.; Zheng, S.; Gao, S.; Granelli, F.
CPAC: Energy-efficient algorithm for IoT sensor networks based on enhanced hybrid intelligent swarm / Wang, Q.; Liu, Wenjing; Yu, H.; Zheng, S.; Gao, S.; Granelli, F.. - In: COMPUTER MODELING IN ENGINEERING & SCIENCES. - ISSN 1526-1492. - ELETTRONICO. - 121:1(2019), pp. 83-103. [10.32604/cmes.2019.06897]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/251507
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact