Revenue Management uses data-driven modelling and optimization methods to decide what to sell, when to sell, to whom to sell, and for which price, in order to increase revenue and profit. Hotel Revenue Management is a very complex context characterized by nonlinearities, many parameters and constraints, and stochasticity, in particular in the demand by customers. It suffers from the curse of dimensionality (Bellman 2015): when the number of variables increases (number of rooms, number possible prices and capacities, number of reservation rules and constraints) exact solutions by dynamic programming or by alternative global optimization techniques cannot be used and one has to resort to intelligent heuristics, i.e., methods which can improve current solutions but without formal guarantees of optimality. Effective heuristics can incorporate “learning” (“reactive” schemes) that update strategies based on the past history of the process, the past reservations received up to a certain time and the previous steps in the iterative optimization process. Different approaches can be classified according to the specific model considered (stochastic demand and hotel rules), the control mechanism (the pricing policy) and the optimization technique used to determine improving or optimal solutions. In some cases, model definitions, control mechanism and solution techniques are strongly interrelated: this is the case of dynamic programming, which demands suitably simplified problem formulations. We design a flexible discrete-event simulator for the hotel reservation process and experiment different approaches though measurements of the expected effect on profit (obtained by carefully separating a “training” phase from the final “validation” phase obtained from different simulations). The experimental results show the effectiveness of intelligent heuristics with respect to exact optimization methods like dynamic programming, in particular for more constrained situations (cases when demand tends to saturate hotel room availability), when the simplifying assumptions needed to make the problem analytically treatable do not hold.

Combining intelligent heuristics with simulators in hotel revenue management / Brunato, M.; Battiti, R.. - In: ANNALS OF MATHEMATICS AND OF ARTIFICIAL INTELLIGENCE. - ISSN 1012-2443. - STAMPA. - 88:1-3(2020), pp. 71-90. [10.1007/s10472-019-09651-9]

Combining intelligent heuristics with simulators in hotel revenue management

Brunato M.;Battiti R.
2020-01-01

Abstract

Revenue Management uses data-driven modelling and optimization methods to decide what to sell, when to sell, to whom to sell, and for which price, in order to increase revenue and profit. Hotel Revenue Management is a very complex context characterized by nonlinearities, many parameters and constraints, and stochasticity, in particular in the demand by customers. It suffers from the curse of dimensionality (Bellman 2015): when the number of variables increases (number of rooms, number possible prices and capacities, number of reservation rules and constraints) exact solutions by dynamic programming or by alternative global optimization techniques cannot be used and one has to resort to intelligent heuristics, i.e., methods which can improve current solutions but without formal guarantees of optimality. Effective heuristics can incorporate “learning” (“reactive” schemes) that update strategies based on the past history of the process, the past reservations received up to a certain time and the previous steps in the iterative optimization process. Different approaches can be classified according to the specific model considered (stochastic demand and hotel rules), the control mechanism (the pricing policy) and the optimization technique used to determine improving or optimal solutions. In some cases, model definitions, control mechanism and solution techniques are strongly interrelated: this is the case of dynamic programming, which demands suitably simplified problem formulations. We design a flexible discrete-event simulator for the hotel reservation process and experiment different approaches though measurements of the expected effect on profit (obtained by carefully separating a “training” phase from the final “validation” phase obtained from different simulations). The experimental results show the effectiveness of intelligent heuristics with respect to exact optimization methods like dynamic programming, in particular for more constrained situations (cases when demand tends to saturate hotel room availability), when the simplifying assumptions needed to make the problem analytically treatable do not hold.
2020
1-3
Brunato, M.; Battiti, R.
Combining intelligent heuristics with simulators in hotel revenue management / Brunato, M.; Battiti, R.. - In: ANNALS OF MATHEMATICS AND OF ARTIFICIAL INTELLIGENCE. - ISSN 1012-2443. - STAMPA. - 88:1-3(2020), pp. 71-90. [10.1007/s10472-019-09651-9]
File in questo prodotto:
File Dimensione Formato  
Article.pdf

Solo gestori archivio

Descrizione: Ultima bozza a nostra disposizione prima della pubblicazione uncorrected proof
Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF   Visualizza/Apri
s10472-019-09651-9.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/250044
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact